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ABSTRACT
This report summarizes much of the work that has done in the field of stability
theory with regards to the generation of Liapunov functions. The emphasis of the
report has been to survey and discuss the work of American engineers and mathematicians
in this area. But since most of the work was motivated by Russian mathematicians

and engineers, this report also includes a sizable discussion of the Russian contri-

‘butions. Reference is also made to the contributions due to mathematicians in

England, Japan and Italy. Under separate cover, the writers of this report submit
a sizable list of references in the stability field and a summary of the theorems

and definitions which are important in the analysis of stability problems.
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LIST OF SYMBOLS

(most symbols are defined where they are used in the report and will not be

repeated here)

V = usually denotes a scalar function, or functional which is a Liapunov function
or a candidate for a Liapunov function.

,,xll = usually denotes the Euclidean norm of‘an n-dimensional vector,

defined as:

1
v s2 ]

-

t e [g, E] means a £ t £ b

t € {a, b:'J means a < t £ b.

t € (a, b) means a < t < b,

a ¢ A means that element a is a member of set A.

AT = transpose of matrix A

A¥* = conjugate tramspose of matrix A.

é = time derivative of the vector function, x = x(t).

En = Euclidean n-space.

c" = The class of functions having continuous n-th order partial

derivatives,

w = gradient of the scalar function V.
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SUMMARY

In this part of the report certain applications of Liapunov'’s stability
theory to the stability analysis of nonlinear control systems are reviewed.
Section 1 gives some definitions and basic theorems and Section 2 is a dis-
cussion of the equations describing the control system to be considered here.

The problem of Lur'e is treated in Sections 3 and 4 and the results of
Lur'e ‘are presented as well as more recent results obtained by Lefshetz. Fol-
lowing Section & are three examples. Section 5 modifies the restrictions on
the admissable nonlinear characteristics and more useful results are obtained
than in the preceeding two sections. The treatment of Aizerman and Gantmacher
is followed here. An example follows.

In Section 6 the problem of Aizerman is considered. A treatment of the
general second order case due to Krasovskii is presented. An example demon-
strates the verification of Aizerman's conjecture for a particular third order
control system.

Two theorems of Popov along with a discussion of the Liapunov function
of Popov are presented in Section 7, 8 and 9. An important theorem due Kalman
relating the Popov criterion with criterion obtained using Liapunov theory with
a Popov type Liapunov function is given in Sectiom 10.

There follows a compendium of examples illustrating applications of the
theory to particular problems as well as the derivation of some simplified

criteria from the more general results.
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INTRODUCT ION

This report deals with new methods of generating Liapunov funetions. The
attempt was made to survey the stability field in order to summarize all possible
methods.of obtaining Liapunov functioms. Beeause of the great scope of eurrent
usage of Liapunov theory, or generalizations of Liapunov theory in the fields of
linear and nonlinear ordinary differemtial equations (both autenemous and non-
autonomous), differential-differences equatioﬁs, functional equatioms, stochastic
differential equations and others, oeur objective of a . complete and therough survey
of the field was not accomplished. But we do feel that much has beenm accomplished,
these accomplishments will now be outlined in the following paragraphs.

Section Two of thi§ report 1s comcermed with Liapunov functions construcied
from the varieus first integrals which occur in certain dynamic systems. This
use of first integrals was one of the motivating factors im Liapunov's original
work; and we feel that this area of Liapunov theory is still one of the most
important sources of usable Liapunov functioms.

Section Three discusses the work of Puri and his colleagues at the University

of Pennsylvaniajthis work is a "monlinear analogue™ of the Kimear Theory developed
by Routh and Hurwitz.

Section Four comsiders a method of generating Liapunov functions which many

times is the first technique that engineers attempt. The work which we report
here deals with some of the more important results which have beem obtained.

Section Five deals with the variable gradient method and the many modificatioms

of the precedure. This method is very useful but has a built-in trial-and-error
procedure which may prove extremely difficult in its application to certain systems.
Section Six considers the use of Liapunov functions in analyzing the stability

of automatic control systems. This work originated in the Russian school with
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investigators such as Lur'e, Malkin and Popov; the major American contributors
are S. Lefschetz and J. LaSalle.

Section Seven discusses the work of many contributors, with the major

motivation coming from some early theorems of Krasovskii.
Section Eight deals with the partial differential equations of Zubov and
the extension of this work due to Szegd.

Section Nine considers the allied topics of boundedness and differential

inequalities. This work is due mainly to Bellman and Yoshizawa(Japan).

Section Ten presents some of the "Liapunov theory" results obtained for non-
autonomous systems. These results are mainly for linear systems, with some
treatment of the nonlinear problem. We might add, that much of the work in

Section Nine has application to the time-varying stability problem.

Section Eleven is a miscellaneous section. It contains some very important

results of Leighton and Skidmore for autonomous systems. It contains reference
lists dealing with stochastic stability, functional-differential equations and
topological dynamics.

Under separate cover we will submit a reference list on stability theory
and a compendium of theorems and definitions. Also, any general recommendations
and observations will be given by the principal investigator at a contractor's
meeting at Huntsville, Alabama.

A note about the "physical structure" of this report is in order. Each
section will have its pages numbered independent of the other sections; this
will also be true of theorems, definitions and equations. The symbols will be
defined as used and no complete list of symbols is given. No list of illustra-
tions is given; the few figures which occur, occur at the location in the report

at which they are being discussed,
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One other note deals with the method of '"Separation of Variable'" for
generating Liapunov functions. This method was menticred by J. P. LaSalle
in a speach given in Iowa in 1964. During the contract period, the principal
investigator could not find any further information on this topic. In what
follows, we give a very rough sketch of the method:

We attempt to construct the following type of V-function for an

n-dimensional system,

Vo= V(x)) + VZ(XZ) + .. .+ Vn(xn).
The class of systems covered is
n
——
;{i = % Pik(—)s) fk (Ek),

The candidate for V is

n i
4 N
V =|i=1 fi (eri) d 6 ;
6;1

where

Vo= bpfn Ao+ aR]S.
The sufficient conditions for stability are then obtained from V and V. (The

Russians have used this procedure.)
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INTEGRAL METHODS

SUMMARY

In this gection of the report we deal with one of the most basic methods
of generating Liapunov functions, "the integral method". Liapunov's work
was the outgrowth of Lagrange's theorem of minimum potential energy and the
concepts of total energy of a dynamic system. First, we give a brief summary,
along with some simple examples, of the use of first integrals as Liapunov functionms.

Next, we discuss the use of Chetaev's linear bundles of first integrals
as candidates for Liapunov functions. Along with this discussion, we include
Pozharitskii's extension of this idea, which is to find a function of the &nbwn..
first integrals of a system which is positive definite and use this function as
a Liapunov function.

Then a short discussion is presented concerning the work of Rumiantsev
in extending the second method of Liapunov to the problem of the stability
of motion of continuous media with respect to a finite number of parameters,
which describe the motion through integral expressions.

Finally, the work of Infante, Walker and Clark is consideréd. Their
method was to obtain a first integral of a "nearby" system and then use this
function as a candidate for the Liapunov function of the origin system,
whose stability analysis is desired.

A FIRST INTEGRAL USED AS A LIAPUNOV FUNCTION

One of the simplest examples of the application of Liapunov's Stability

Theory is a dynamic system which possesses a first integral, V(x) = C = constant.
Since 6(5) = 0, the function V(x)can be used as a Liapunov function to prove
that the origin is stable. The best way to discuss this work is by example;

thus, we consider a few pertinent examples in the following text.



Consider the following nonlinear conservative svstem defined by

X = 4x3 - 4x,

or in state variable form,

X1 T x

X2 = 4x 13 — 4X1.

The singular points, or equilibrium points, are found to be:
P]_ (0 ’O) > Pz(l,o) ’ PB(‘]- :0)"

By considering the total energy,

X
2 3 2 4 2
E=x, + (-4x1 + 4xy)dxy =%y - X+ 2xg
2 2
)

where é = 0, as a Liapunov function, we see that the origin is stable and that
the boundary of the stability region passes through P, and P3 and thus is
defined by:

+ 2 2 4
E = E(x;, x9) = E(-1,0) =1 =%y +2x - x|« .
2

Another example is a mathematical pendulum defined by, [5] *

oo 2
X = - )\ sin x,

or
’.‘1 == >\ X2

iz = )\ sin x,.

* Numbers in the square brackets refer to references at the end of the section.




The energy integral is given by
2 2 2 ' 2
= )\ X2J+ )\ sin dexl = _)_\___ Xz]
2 2 2] +2 (1 - cosxy) R

where

0.

o 2
E .-._Z\__ {2xz)\sinx1 + 2(sinX1)(->\xz)}
2

Therefore, in the neighborhood of (0,0) the system is stable.

A generalization of the previous example is the system defined by, [i])

x +g(x) =0,
which describes a unit point mass under a spring force g(x). The state

variable formulation is

X)] = X9
X, = -g(xl).
Since this is a conservative system, the total energy is

X1

2
E = _52_+ g(xy) dxq,
2

where

ﬁ xz(-g(xl) ) + g(xl)x2 = 0.

Therefore, E is a Liapunov function and proves that (0,0) is a stable

b

equilibrium point if
(1) % 8(x)) >0, x # O,

(2) g = o.
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As a final example we consider a linear constant coefficient dissipative

system defined by, [3] R
mx + ex + kx = o,
where ¢ > 0, m >0 and k > 0. The total energy of the system is

L2 2
m(x) +k x,
2

[}
I

where
2

.

mi(-ci-kx)+kx§:: = - ¢cx .
m

Ble
]

Thus, by LaSalle's thereem, we have an asymptotically stable region throughout
the phase plane.

CHETAEV'S AND POZHARITSKII'S WORK

In reference [25\ , Pozharitskii considers the equation of perturbed motion
for dynamic systems; namely,
2 = £ &,
where x is an n-vector. These systems admit p<n first integrals
U (%, t) 5 ... ,UP (x, t)
which vanish for x = 0. If we can now succeed in finding a function
}S (Ul’ oea Up) of known integrals which is definite with respect to X,

then stability of motion is guaranteed by Liapunov Theory. The first theorem

concerning the existence of such functions given by Pozharitskii is as follows:

"In order that there exists any definite function ,é Ugs vee Up), of

the known integrals, it is necessary and sufficient that a function

YWy, e 5 UL) =U12 (x, t) + ... +Up2 (x, t)

be definite."
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The problem is applying this theorem is still the "old story'" of deter-
mining whether or not a given function is definite, semi-definite, or
indefinite.

Another theorem of Pozharitskii is:

"The function 74 @Wys oee s U, ) will be definite only when for at least
one of the integrals, say, U; (x, t ), it is possible to find a pair of
definite functions ry ( ”-}5”2 ) and(oi( // ?.‘.//2) such that

%2 (x, t ) > r; whenever ”5”2 > 0 and

U% F oeee +Ui:f1 +Ui-2+1 e +Up2< 6)1( //5//2)."

From the proof of this theorem it follows that if it is possible to select

— - e

Lol s £ mes
L iS5 LOr any

sSucn sf the

a pair of fumctio one o & integrals, then a pai
be selected for any other integral. This theorem appears to be more useful
than the first theorem in setting down guidelines for determining a definite
function, 76 Wy ooe s U, ).

The practical significance of this second theorem becomes more evident
in the case when Uy, ..., Up do not depend explicitly on time. This is stated
as a corollary:
"If Uiy, ven Up do not depend explicitly on time, then, in order that

>L(U1, o«+ > Up) be definite, it is necessary and sufficient that at least one of
the functions U; (x) assumes only positive values at all points for which
U @ =... =037 @ =Ty @=... =0, ® =0,
except at x = 0., Moreover if the last condition is satisfied by at least one
of the functions Uy (x), then it is satisfied by any other function".
This last result essentially simplifies the problem because from any
(p-1) equations

Up = ... =Ug-1 =Uj41 = =-==Up = 0,
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it is possible to express any p-l variables, say Xn-p+2’ R in terms

of X7, ... x“‘P+f

xn-p+2 = f1 (xl, cea s xn-p+l) s eee s X fp-l (xl, oo s xn-p+1)'
If this can be done, then the problem of the definiteness of 7L Ugs oo- > Up)

will be determined from the definiteness of the function

V(xl, cee s xn~p+1) = Uy (xl, cev s Xpon ST fp-l)
with respect to the variables xy, ... , Xp-pt+l+
Thus, the author in reference [%i] has given certain conditions under which
there exist functions of the first integrals which are definite.

The following theorem gives conditions under which no definite first

integral can be constructed from Uy, Uy, ... , Up . - e

"If the known integrals do not depend explicitly on t and if they are of the

form

U; =(agj)y x + higher order terms

where the rank of (51, cee gp) is p, then no definite first integral can be

constructed from Uy, ... , UP"'

The method of Chetaev [é@ is as follows:

"If the given time-independent integrals are holomorphic functions of the

variables, then the constants kl s ses 3 )p, C1s «vo CP are selected in such a

way that the expansion of the function
2

2
R, e s T,) = Ay Up+ e+ Ao Uk GU + oee + CU
begins with a definite quadratic form'.

By the first theorem of Pozharitskii such constants can be selected only when

the function )é @Wys see Up) is definite. Thus, Pozharitskii's theory includes

the work of Chetaev. From the above theory some guidelines concerning the choice of
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the proper functions of first integrals are given.

It was the work of Chetaev in using a definite linear bundle of first
integrals for Liapunov functions which helped the Russian mathematicians. and
engineers in their study of the stability analysis of complicated gyroscopes
and other rigid body motions. There are many Russian papers concerning this
application of Liapunov theory; an incomplete list of references is given in
the back of this section, [16:] to [59-‘ .

From reference [2_6] we now present an example of Chetaev's theory. This

example concerns the stability of a heavy symmetrical gyroscope on gimbals:

thus, there are three degrees of ffeedom, described by the Eulerian angles

56 )')L )y © . The principal moments of inertia for the rotor are

Al = By, Cy; those for the inner gimbal ring are Ay, By, Cy3 and the principal
moment of inertia for the outer gimbal ring is C3. The defining equations

for this system.are Euler's equations of motion for rotating rigid bodies. The

first three integrals of the equations of motion are
% + u)(:‘? Ty
* 2
V(K5 - Kgu') + Eu = Ky,
. . 2
©2+’}42(K5-K6u) + K3 u =Ky,
where u = cos © and the K;i's depend on the parameters of the system. The

equilibrium position corresponds to the case when the rotor's axis is vertical}

that is,

S 1,0=0

P ¥k

The perturbation equations are obtaired by introducing the following

0 oru

-

change of variables

. » .

é:xl’ ¢=f°+x2,')‘= }€.+X3,u=1-X4,
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where the initial conditions of the perturbed motion are
Too =r5-R’KIo=K1 - K* , Kyg =Ky - KF,
Kipo = Ky - Kg*.
For the perturbation equations the above first integrals are
R =x9 + xj3 -}l:o X4 " X3 Xy,
Ky* - K1*==*-K6x3x2 + 2K X3%y +

-K6)Lo xi + (K5 -K6) xg + (2K67£o - Kp) Xy,

_ .2 2 2 2 2
K4*— x7 - Kgxg x;, + 2 Kgxq x4-2')zo Kgxqx, +

+ (KS-Ké)xg +4K67%X3X4 —K67‘62 xz +
+ 2%0 (KS - Kﬁ) X3 + (2)‘3 K6 - K3) X+.

We now attempt to apply Chetaewv's method of obtaining Liapunov functions;

consider

&

V=K, <+, -EK]) +XxK +

+ °<3 Rz,

. L[]
where the 0(1 are arbitrary and K‘g*x AZ_*_ 1 - u? - 2x4 = 0. The V is zero
because V is a combination of first integrals. The linear terms in V can

be made to vanish if°<1 = - 2'}‘; and °<2 = Kl')‘.o- 1l Kj
2

Then the Liapunov function will consist of a quadratic form and third -
and fourth - order terms. The quadratic form is positive definite amd thus
the stability of the gyroscope with respect to Q,é > 75., '}5 is

guaranteed if the following inequalities are satisfied:

X3%0,Rs -K > 0,%, K - 1/2K; >0,

¥ox, -1/2K -}Zﬁxé > 0.




RUMIANTSEV'S WORK

In reference [2@ » Ruminatsev considers an arbitrary holonomic mechanical

system, where qj, ... , qp are the independent generalized coordinates and

211, cee s ‘in are the generalized velocities. The unperturbed solution of the

system is given as

qq =f4(t), 1 =1, ... , n, (1)
where the initial values are q; = fi(to) and c‘;i = f.i(to). For the perturbed
motion, let ° °

q = f£(t) +€;,q = fi(to) + éi

o o

where € i and éi are real constants designated as perturbations. Since the
force system remains unchanged, these constants define completely the perturbed
motion.
The values, q; and ‘ii’ are now replaced for the perturbed motion by
q = £5(t) +xq, q4 = f‘i(t) + Xp4

where x;(t), i =1, ... , 2n, are the variations of the variables q; and C.li-
The defining equations of the perturbed motion can be written as

x = E(t.9, (2)
where x and F are 2n - vectors.
We assume that F is such that a unique solution exists for every t > ty and
that F (t,0) = 0.

We are interested in the stability of the umperturbed motion in (1) with

respect to certain real continuous functions Qj, ... , Qp of the variables

xy and time t. For the unperturbed motion the Q; 's are known functions of
time, g;(t). For the perturbed motion the Qj 's are functions of t and the

perturbations &€ i andéi. Considering the differences ys= Q 8> Liapunov

S

called the unperturbed motion (1) stable with respect to the quantities
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Q15 «++ 5 Q> if for all Ly, there exist Ej > 0 and E; > 0 such that for any

é é  satisfying the conditioms

/éi/éEi ’ /éi/é.E"i

for any t > to, the following inequalities hold: ,ysl <Ls 1s=1, ... , k.

]‘_:

Further, we assume that for any set of real values of € 1> € is numerically

sufficiently small, there corresponds a certain set of real initial values yls
o
of the variables y gsuch that for a sufficiently small A > 0 ,

2

- 2
Yio + ... +y° £ A,

ko
if léil < Ei and /éilégi . The converse of this last statement also is
assumed to hold.
Since the y; are related to t and the Xy then the region of variation

of the real variables t, xj, ... , xzn

2 2
t itb’ X1 + ... +xX2n £ H, (3)

where t, and H > 0 are constarts, will correspond to the region

€ Bty t...tye £ HL ()
of variation of the warlables &, yg , where H; > 0 is a constant.
We shall assume (2) has a first integral
?f(}_{, t) = comstant, (5)
which is a real, continuous, bounded function of its variables in the
region defined by (3).

THEOREM

"If the differential equations of the perturbed motion (2) admit a

first integral (5) and it is possible to find a positive definite function

}: (yl s oo 5 Yo t) such that the ipequality
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g(Yla see s Yk t) £ %(x]_, caey x2n’t)
is satisfied for all values of t, y; in region (4), then the unperturbed

motion (1) is stable with respect to the quantities Q1 , ... , Q."

As an example of this theorem, Rumiantsev considers the well known

problem of stability of rotation about a vertical axis of a heavy rigid body

in the case of Lagrange [2@. We will not repeat his example in this report
since the above discussion was introduced because of its important application
in "continuous media™ problems. A short discussion of this fact follows.

The theory given above is useful in the application of the second method

of Liapunov to the problems of gtability of motion of continuous media with

t to & finite dusfhdr 6F pg etdrd

’which describe the motion through

certain integral relationships. Examples of such parameters could be the
coordinates of the center of gravity of a bounded volume of a continuous
medium, or projections of its linear momentum on certain axes, or similar
quantities, whose variations with time are described by ordinary differential
equations. The stability of motion of a continuous medium with respect to

the above mentioned parameters will be called the conditional stability of

motion of a continuous medium. An example of this theory is given in the

compendium, example, No. 23.

In passing, we make note of a "somewhat analogous' paper written by

Pozharitskii, Ekﬂ . This paper deals with the asymptotic stability of

dynamic systems with partial dissipation. That is, in a mechanical system
it may be sufficient to introduce damping in only part of the coordinates
describing the system in order to obtain asymptotic stability. First integrals

are used in his discussion of this concept.
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o

INFARTE'S WORK

In references [éj and Eé], Infante considers the second order, autono-
mous system with an equilibrium point at tﬁe origin. The method of generating
Liapunov functions developed in these papers is an outgrowth of the original
geometric considerations in Liapunov's theory.

The technique proposed by Infante is based on the accessibility and
availability of a nontrivial time-independent integral of the second-order
system which can be used in stability studies. If an integral, with the proper
stability properties, cannot be found, a modified system is comstructed which
satisfies two criteria; ome, the systém has a first integral with admissible
stability properties and two, the important qualitative properties in the
original system are retained in the modifiad system. That is, we seek a
"nearby” system. The integral of the nearby system is considered to be a
candidate for a Liapunov function of the original system. We will now
consider the development of Infante's method; and in the compendium at the
end of this section, we include many examples of this method of constructing
Liapunov functions. |

Consider the second order system described by

’.‘1 = fl(xl’ xz) (1)

x2 = 2 (x1, %),
where any time-independent integral

h (xl, X2) = C,

which might exist, must satisfy the following:

Wh X + dh X,y 8h f. + dh £ = O,
= s;;"z’%ql o 2 @
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A sufficient condition for the existence of h = C is
A+ 3, = 0. 3)
SXI }xz
Since most systems do not satisfy equation (3), the system in (1) must be
modified.
For simplicity, let us replace (1) by the following more common state
variable form:
[ ]
X1 = X2
L
XZ = fz(xl, Xz). (4)

}fz

If'hxz = 0, then (4) has an integral which could be used in stability work.

But if }fz = f3 (xl, x2) ;é 0, then no integral can be found and a "nearby

ax,
system" is defined in such a way that this new system has a readily accessible

first integral. The first nearby system we try is

*1
x| =% - f f3 (x5 x9) dx; (5)
o

iZ =i, (xl, XZ)'
By (3), system (5) certainly possesses a first integral but there is no
assurance that the qualitative properties of (4) are retained. The system (5)
is modified by adding arbitrary functions which must satisfy certain geomet-
rical criteria in order to retain the qualitative properties of (4). The
new ''nearby" system is

X
1

i2 = f2 (xl,xz) + f5 (xl, x2),
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¥é, s

where r -BXE . System (6) satisfies equation (3) and the

arbitrary functions f; and fg5 are chosen such that the major qualitative

properties of (4) are retained. The geometrical relationship between
systems (4) and (6) is specified by the third component)x*)of the cross
product of the "flows" in phase space; that is (xl, x2) of system (4)
"crossed with" (xl, xz) of system (6).

The candidate for the Liapunov function of system (4) is chosen to be
the first integral of system (6). The "nearness" of system (6) to that of
system (4) 1is determined by the algebraic sign of x*, if both the vectors
(xl, x2), for systems (4) and (6), rotate clockwise in the phase plane.

If x* 2> 0, then the integral of (6) is a Liapunov function of (4) and will
also give an estimate of the region of asymptotic stabdlity about x = 0.

The claims made by Infante in support of his method of generating
Liapunov functions are as follows:

(1) Simplicity of application and requiring no deep insight into the
problem;

(2) the estimates of the domain of asymptotic stability are very good
for wide ranges of the parameters in the differential equations;

(3) and the flexibility of the method, due to the choice of f, and fj.

A disadvantage of the method is that a poor choice of f; and fsmay contribute

to very conservative estimates of the region of asymptotic stability.

WALKER'S WORK
The work of Walker, Bﬁﬂ and [Eﬂ, is an extension of Infante's work
to ngh order, nonlinear, autonomous systems. He considers systems of the
form
n . n-1
d x + g(x,x,... d x = 0, (1)
~n e | )

dt dt
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which possess (n-1) first integrals

U, (x, X,...,d_x ,t) =K, ,i=1l, 2, ..., n-1. (2)

Equation (1) can also be written as a system of n - first order equations in

state variable notation:
x1 = £1(x3, X3, ..., xp)

x2 = fa(x1, X2, «.., Xp) 3)

xn = fn (Xl, XZ, ...,—xn)u

These equations are equivalent to

dt = dxl = dx2 = ,,., = dxn .
f1 f2 fn ®

Eliminating the explicit dependence of the equation in (4) on time t, we
get n-1 first order differential equations in the m variables. The solution

of these equations are (n-1) first integrals of the system in {l); these are

’%1(5) =c
o o e e e . (5)

7%—1(’-‘) =

where Xp is (xl, e xn). The integrals in (5) may not all be independent;

denoted by:

I
0

n-1,

but each integral in (5) must satisfy.

n ))‘x 0.
o - B id z_ihf ®

j=1 j= J

Thus, if we solve the equation (6) for all the (n-1) first integrals our
stability problems "are over". The trouble here is that equation (6), in

general, is very difficult to solve for?zi.
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One case in which it is possible to obtain a first gntegral is when the

f; are of the following form:

Xy = 1 axz

?H @ ?_H, ’
% =823, 7 ®iax Q)
. ‘a—ﬂ. —-— E—H- >

= "ax n-2 ax
xn-1 n -2
xn - __gkl_;,,_ ’
*n-1

where H, @1, ’Qn-z are certain functions of the state variables.

Combining (6) and (7) gives

2% }(@Q___) + Q'fi(@ dH (912_}1_) +,

axy X, A% 23xy
(8)
.+ W d p) -
* L_ (Qx ? \ 'a_xa g:::_)

If }Li = H in (8), then we see that the equation is identically satisfied and
at least one integral of (7) is H itself. But the disadvantage here is that

4]
very few nt order systems have the form given in (7). One example is

% +K=x = 0,

or
. @g—.ﬁ_ ’
Xl = XZ = LQX:
: A8 _o 2E,
X2 = x3 = 'aX3 1'ax1
X3 = - K}‘z = - _a__g 'Y




In this example Gl = 1/K

¥

From the above theory concerning first integrals of the nth
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and the (n-1) independent integrals are

2 2
1/2 (K x 2 *t x3) = c1,

K/2 ( xg - 2xyx3 - Kx% ) = cy.

order system, (1),

and from the work of Infante, Walker derived the following method for con-

structing Liapunov functions by obtaining first integrals of 'nearby systems”.

The state variable form of equation (1) is
il = XZ
Xy = x5
9
X.n = = g(xl,xzj’ scey Xn).
A modified system is now chosen which has the same form as (7):
91};E_=?;1 = x + g &
B¥x
2
O, 28 _9, 38 =% =x3 + g2 (®
'ax3 'axl
— — — — — — — — (10)
dE _@ QK = x = x + g, @
?xn n-2 'axn_z n-1 n ®n-1

;L;ig = in =-g (®,
ax,.

where the g; are restricted by the left sidesof the equationms.

Note that

the last equation in both systems (9) and (10) are the same; this is done

80 as to retain as much similarity between the systems as possible.

A more
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condensed form for (10) is obtained if the arbitrary 8y are written such that

o/

H _
> T Mm@
1
QH = h,(x) ,
Ax, 2
QB _
7 Pap @
K
Ix - 8,
n-1

[\

S5 "% tohy .

n

Q)

where the hj are conveniently defined as
a
= d

Specification of the hy in this manner does not completely determine the

"nearby" system but the finding of a specific system is not our objective.
Qur objective is to find a usable integral H which is also a Liapunov function
of (9). An integral H of the system in (11) and (12) may not be a Liapunov

function of (9) and thus we modify the equations in (11) in the following

manner:
Ei! = ELE + f
.axl ’axl 1 ?
v

3V _ 9H
x2 - '§x2' + f2,

(11)

(12)

(13)



o/
<
[
+
oy

9x;  ax

e
|
P

_— - (13)

o)
g
[i
!
.'.
=

where 3f1=3f'. Note, that these fi are different from the fi in (3). 1In
'ij Ixy

conclusion we say that if the f; can be chosen such that V is a Liapunov

function of (9), a new method of generating Liapunov functions has been

- - -1 Yy \
g

developed. The gH_in (13) are defimed by {11) and {i12). Hany examples
of this procedure are given in the compendium of examples.,
The advantages of this method accerding to Walker are:
(1) more than half of the gradient, 3V _, of the final Liapunov
function is developed automatically,
(2) hints to further modifications of the technique are given by the
procedure itself,
- (3) good balance between automatic generation of functions and flexi-

bility of application.

The usual disadvantages of other methods are also present here:

(1) restricted to autonomous systems,

(2) results are difficult to obtain for fourth and higher order systems.



- 20 -

COMPENDIUM OF EXAMPLES

This set of examples considers four types of integral methods used to
construct Liapunov functions. These types are:

(1) the use of a definite first integral for a Liapunov functionm,
(2) the use of a combination of first integrals,

(3) Infante}s integral method for second order systems,

(4) Walker's integral method for higher order systems.

These examples also point out the variety of different physical problems
which can be analyzed by Liapunov's method; such as, electrical networks,
mechanical vibrations, control systems, nuclear reactor dynamics, magneto-
hydrodynamics, and others. The extent of the region of asymptotic stability

is also approximated in many of the following examples.

Example 1, [1] Generalized LRC - Circuit

This example is a generalization of the LRC equation of electricity:
X+ £(x) x + g(x) = 0.
In LaSalle's discussion of the region of asymptotic stability, in reference [1],
he simplified the nonlinearities in the following way:
1) f and g are polynomials,
2) £ is even and g is odd,
3) g acts like a straight line through the origin, and
4) g is monotone increasing with x.
We introduce the integrals

X

F(x) = / f(x) dx,

o

X
G(x) = f g(x) dx,

[¢]
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where F is odd and G is even, and F(Q) = G(0) = O.
Consider the equivalent system

X = y - F(x),

y = - g(x).
Since F and g are polynomials, existence of solutions is guaranteed. The
equilibrium solution is the origin (0,0).
As a candidate for a Liapunov function, we choose the total energy of

‘the system when there is no dissipation, f = 0; that is,

V=125 + a).
The time derivative of the V - function is

V=yi g %= - ye) + sy - g() F() = - g(x) F).
If there exist positive constants a and L such that

g(x) F(x) > 0 for [x] <a, x 7!' 0
and

G(x) < L for [x] < a,
then the bounded region «fbn , defined by V(x,y) < L , is a measure of

the extent of asymptotic stability of the system about the origin.

Example 2, Ll Van der Pol's Equatio

A special case of the previous example is the Van der Pol equation:

X +E€@E-1) % + x = 0, €>0,

or equivalently,

]

0 ‘3
X y - €(%3-xn,
y = - =
The only equilibrium point is the origin and the linear approximation shows

that it is unstable. If t is replaced by -t, then the phase plane
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trajectories remain the same but the orientation is reversed. The origin
is then asymptotically stable. This same effect is obtained if we let

€ < 0 and retain the original orientation of t.

Thus, as in the previous example, we have for V:

2 2
V = y2 /2 + G(x) = x__+y
2
where f(x) = € (x° + 1) and g(x) = x.
The time derivative of V is
. 2
V=- €x* (%3 —1), c<o.

Thus, é £ 0 for x2 £ 3= a2 . Taking L = 3/2, we find that the region
2 2
of asymptotic stability chosen in this manner is defined by x + y < 3.

Example 3, Eﬂ A Second Order Example

Consider the second order equation given by
LX) - 2
x+ax+2bx+ 3x =03 a, b > 0,

or its equivalent

y =-2bx -ay - 3x2.
The equilibrium solutions are (0,0) and ( — 2 b/3, 0 ). By linear approxi-
mation, the point (0,0) is asymptotically stable and the point( - 2/3 b, 0 )

1s an unstable ""saddle point". By Liapunov theory we can construct a region of

asymptotic stability about the origin. The total energy of the corresponding

undamped (a = 0) system is chosen as a Liapunov function:

2 2
v = T2 4 b 4 i

>

where

V=-ay’.
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Thus, a region of asymptotic stability about (0,0) is defined by the inequality

2 2 3 43
V =y/2 + bx“ + x <L=27b,

where V = 4b3 forms a closed loop containing (0,0) and passing through

———

27

(¢-2/3P3 0y,

Example 4, El,?] Lienard's Equation

For Lienard's equation
X + f(x)x + g(x) = 0,
we assume that

(1) xg(x) > 0, x # 0, g(0) = o,

¢, x # 0, £(0) = 0

3

{92\ £
\&J -5
b 4

3) ox) = / g(x) dx — oo as //x//—a- 0.
o

Thus, we assume that the potential energy G(x) is positive definite and that
at x = 0 is its minimum; the potential energy approaches infinity with /x / 3
and the damping is always positive.
An equivalent system is
x =y,
y = - g(x) - yE(x).

The Liapunov function is taken to be the total enmergy of the system

(where f = 0)3

L]
[

1/2 yz + G6(x) ,

where

L]

{T - £(x) y2 < o.

Since V—s %0as x* +y2 — o0 , then all
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solutions are bounded for t > 0. VEoO only for the equilibrium solution
of the system. Thus, the whole region of space is the domain of asymptotic
stability; that is, the system is completely stable.

We also note that if f(x) = 0 for all x then we can conclude from
above that the system is stable; and if f(x) < 0 for x 7é 0, then the
system 1s unstable at the origin.

Example 5, (2] Lewis Servomechanism

The defining equation of the Lewis servomechanism is a special case
of Lienard's equation:
. X +25@-a x| ) %+ x =0,
where S 1s a system parameter. In this equation
fx) = 25 @ -a |x|),
g(x) = x.

The state variasble formulation is obtained by choosing y as

y =x + ff(x)dx=;<+F(x),

o
where the time derivative of y gives
y=% +£(®)x=-gx = - x
Thus, the system can be described as
y - F(x),

- g(x) = - x,

.
X

0

y
The same Liapunov function is chosen as in the previous example:

X

V=y2/2 + fg(x) dx ,

o
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where

= yy + xg ()

- g(x)F(x)

=-xj2§(1-a/x/)dx.

o] .
In the vicinity of the origin, the rest position, V is negative semidefinite

e

]

if g 70. Therefore the system is asymptotically stable.

As a numerical example, say that 2 g = a = 1 . Then
XIXL s UL 2
F(x) =x - 2 6()= 2, andV = 172 (2 + 9

~where V = -’x?/2 @ - ,xl ). Thus, V is negative semidefinite if

| x | < 2 . Therefore for any solution starting inside, the circle

yz +x2‘ = 4 in the xy- es (0,0) as t —» =c

-

Anv
Any

limit cycle of the system lies outside this circle.

Ex le 6 2 Rotating Rigid Body

The Euler equations for angular motions of a rigid body in space are

2.
I

(8-C) qr,

Bq = (C-A) pr,

Q
3]
]

(A-B) pq,
where A < C < B. The A, B, C are moments of inertia and the p, q, r are
angular velocities about the x, y, z - axes, respectively. This sytem
could represent an artificial satellite. The motion which we analyze is the
following; assume that the satellite is rapidly spinning around the z - axis,
that is,

=l >> L

lp| <« ¢« L

9] << b
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The spinning of the body exhibits a certain gyroscopic rigidity but the

motion is unstable. The proof of this statement is as follows.

Let the angular velocity about the z - axis be expressed as the sum
of a steady spin rate R, plus a small perturbation I, T =1, + Ro’ The

equations of motion become

Ap = (B-C) ¢ (R, +r) ,
Bq = (C-A) p (R, + 1),
ci-* = (A-B) pq.

If p and q are assumed to be positive or zero together in the region of
interest, then we can consider the positive definite form

2
V=pqg+r, .,

where

[C-A p2 + B-C qzj Ro +
A

*

°

+ [:_Q]—?épz + Eing -2 _Eé_épq}r
The equilibrium solution of this new system is (p, q, ry) = (0, 0, 0).
Thus, when we are sufficiently close to the origin, the second ''square
bracket" term in V is dominated by the first 'bracketed" term. Therefore if

*
R, > 0, V and V have the same sign and the system is unstable. If R, < 0 and

p and q have opposite signs, then the system is also unstable. The con-~

clusion is that a rapid spin about the axis of intermediate moment of

inertia can not be maintained.
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Example 7, [3] Passive Nonlinear Network

The following example 1s concerned with a passive nonlinear network whose

elements are nonlinear inductors, capacitors, and resistors. In this circuit
there are no internal sources, mutual inductances, or ideal transformers. The
energy storage elements are the inductors, j = 1, ... , m , and the capacitors,
j=m+1, ... , n} the remaining elements in the circuit are resistors. The
‘notation is as follows:

th
voltage of the j element

o
]

[
I

th
current in the j element

flux in the jth element

X

charge in the jth element.,

N
(]

The governing equations of the circuit are:

(1) for the inductors; j =1, ... , m

i,
J

&5 =V

(2) for the capacitors; j=m+ 1, ... , n

fj (76) = nonlinear function of)lj

e £, (qj) = nonlinear function of qj

J j

ij = qj.

Thus, the state variables, X1> eoe > X are}Li, coe s 7‘;, Yetl, ... ,%°
The gquilibrium point is assumed to be x = O, where f.j(O) =0, (j=1, ..., n).
As a candidate for a Liapunov function for this passive resistive

network, we choose the stored energy of the system:




- 28 -

n t
E=V(E = :Ez; e ij dt
i=1 o
m 7& n q
] B
=Zf £, (P) d¥, + f £ (q ) dq
j=1o0 7€J ;¢5 J<ZE;Zi-1 o J J
n xj
=Zl\/; fJ(xj)de,

where

n

[ ]

V®=Z e i <0,
j:l J ]

for a passive resistive network. Thus, V(x) is a Liapunov function if

L xj fj (Xj) >0,

(2) f fj (xj) dxj = 00 ,
o

Therefore, the system is asymptotically stable in the large.

Example 8, (J Rigid Body Motion

This example will illustrate the use of linear approximation and the

use of first integrals. Consider the following system which is frequently

seen in the study of the motion of rigid bodies:
xl = sz (X3 - a) )

.
X

3 X, X

- . ——
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‘where A, B, &.and b are constants. There are three equilibrium states
El ¢ x3 =1L, Xy = 0, X3 =D

E2 ! XF0yX%Xy=m, X3 = a

E3 H X1 = 0, X9 = 0, X3
where L, m, n are arbitrary constants.

Stability of Ey

We change the coordinates so that E; is at the origin. The equatioms

of transformation are
yl = Xl - L N yz = XZ, Y3 = X3 - b.

The new system equations are

yl =A (b"&) Yz + AY2 Y3’
Yy, =B (y; +1) vy,
}.'3 = 0’1 + L) Yo -
The characteristic equation for the linear approximation is
-\ A(b-a) 0
2 2
0 - A LB | =)\ @B — )5 = o.
0 L -\
The characteristic roots are 6, L /B , — L /B . For physical

reasons assume L 75 0;1if L = 0 , then Ej and E; coincide.
If B > 0, then one of the roots is positive, and E; is unstable. If

B < 0, then we have the critical case and we must look at the nonlinear terms.

There are two obvious first integralsi namely,

2 2
Vi =y, - By =0
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-and

V, =Gy +1)) -AGy + b-a)? =c,
where 61 = 62 =0. If B < 0, then V; is positive definite in y, and y,
and thus we have stability in these two variables. This means that if
y, and y3 are initially small, then they remain small. From the second
integral we see that if y3 remains small then y| must also remain small.
Thus,

(1) E; is stable if B < O,

(2) E, is unstable if B > 0.

Stability of E,

By symmetry we see that

(1) Eo is stable if A < O,

(2) E, is unstable 1f A > 0.

Stability of Ej

Change the coordinates by using the following
Yp T* Y2 T % Y3 T X3 7 W

Thus, E5 is at the origin in the new system:

y1 =Ay; (y3 -a+m ,
yo =By; (y3 -b+m,
y3 = ¥1¥2-

The characteristic roots corresponding to the linear approximation are

0, + Y AB (m-a)(m-b).
If {_AB (m-a) (m-b)} > 0, then E; is unstable. If {AB (m-2) (m-b)} < 0,

then we have a critical case and the nonlinear terms must be considered.

roenCOE U e~ T ) -

P P PRS- PP A dah
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An integral of the system is
. 2 2 2
V =-3B (mb) y; +A (m-a) yo, +AB (a-b)yy =G,

where V = 0. Thus, we conclude

(1) B3 is unstable if {AB (a-a) (m-b)} > 0,

(2) E 1s stable if JAB (m-9)(m-b)} < O and{A (a-b) (m-b)} < o0,
(3) this analysis fails if {}B (m—a)(m—b)}’ <90

andzA (a-b)(m-b)} > 0.

Example 9, (4] Rigid Body Motion

This example is concerned with the use of a Liapunov function in

determining the stabilization scheme which will achieve zero spin for a

satellite in finite time. The time to reach zero rotatiom is proportional

- to the square root of the initial rotational energy.

The equations of motion of the satellite are

I3W) = (Ip - IW, Wy 4T,
LWy = (I3 -IPW Wy +T1,,
LWy = (I; - I)Yw; W, +T;,

where U)iis the rate about the ith principal inertia axis, I; is the moment

of inertia about the ith axis, and Ty 1s the torque input about the ith axis.

Let the candidate for the Liapunov function be the total rotational emergy:

. |
V="2 (W% + w2+ 150%) .

The time derivative of V is

Vo= TW 4T, Wy T W
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If we choose the input torques to be

-oX  Ii
T, = 2 ;7%\!
Vv =- /v
N [\/v (x(£)) - v (x(tov»J-

Thus the time to reach zero rotation is

2
T-t, = « V(%) ,

since V(0) = 0 at zero rotation.

then we find

and

Example 10, [5,6] __Lagrange's Theorem
Lagrange's theorem on the stability of the equilibrium point of an
n - degree of freedom system can be proved through the use of Liapunov functions.

Let qi be the generalized positional coordinates and P; be the generalized

moments of this holonomic conservative system. The potential emergy, V = V(q),

is a positive definite function of q. The kinetic energy, T = T(q,p), is a

positive definite quadratic form in p with coefficients analytic in g. The

equations of motion of this sysgem are:

d {’BT}_ dT__ IV, (A =1, ... , n)

dt —apj_ gqi ':')qi
dq
'a‘t—i‘" = pi Y (i = 1, oo ey n)c

Define the Hamiltonian to be H =V + T. This will be our candidate for
a Liapunov function. By definition of T and V, we have that H is positive
definite with respect to the equilibrium point (p, '@) = (0, 0). The time

derivative of H along the trajectories of the system is :
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g_g a + _Q_H_ 131:’ (sum on i)
dqy api

BH QH__QH DH =0,
291 9P  JPi Q9%

e
]

from the canonical form of the equations of motion. Thus, the equilibrium position
is stable.

Example 11, [5) Instability Theorem

Dealing with the same conservative system,we now prove an instability

theory. Let T be the same as in the previous example, but V now is negative

definite at the rest or equilibrium point. The canonical equations of motion

are as before:

qi = E_Ii 3
9?1

l;j_ =“9....._H s
244

where H =T + V., We now expand T and -V in the following forms:
-V=Um(g) + Um+1(g) o
where U, (q) are 1th degree homogeneous forms in g, and m > 2, and

n n

<7

where a « @ are constants, and A(0) = 0. Since T > 0 if p # 0 and

for any g, then 3 a°§€ P, p@ is positive definite.

The candidate for a "Liapunov function" is
n
-5

P
1 <€
where V; has a variable sign. The time derivative of Vi is

]
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* n N -
vV, = =7 (Pi q; t+ Pi qi)
i=1
n GH_ 2H
=S7 Gy 3% e 39 )
i=1
n ar dUm QUmtl
= 27 (py 4dpPi + g5 34i 3 Qg +) +
i=1 i
n
-2 qj dAk p, p .
i,j,K=1 a4

Apply Euler’s theorem on homogeneous functions to give the following:

n n n
1,j=1 13 4 5=1 I k=1 2 9 J

-+{émn + (m+ 1) Upyq + ... }.

The first bracketed term is positive definite with respect to P because the
n

variable coefficient (Aij - E : qk gAij ), can be made
K=1 '_iqk

sufficiently small, as compared to ajq > since the variable coefficient

is continuous in ¢ and zero at g = 0. The second bracketed term is also
positive definite since the lead term, m Um, is positive definite. Thus,

the system is unstable since V; has variable sign in the neighborhood of

the rest point and V, is positive definite.

Example 12, (5] Instability Theorem

Again, consider the above conservative system, except now we assume that

V is indefinite in the neighborhood of the rest point. The system can be

shown to be unstable under this condition. The V - function used to prove

this is n
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th
Assume that the potential V can be written as an m degree homogeneous form,

V= -Um(g), Um(g)'=0.

In any region where -H = - T + Uy is positive, Uy must be positive also

since - T < 0. Therefore, we define the region C as that regionm in the
n
neighborhood of the rest point where E : Pigg > O and

-H > 0. In region C, V5 > 0 and on the boundary of region C, Vv, =0.
The time derivative of V, is given by:

R n n n
vV, =-H E' azijpipj + S .:_ (Aij + Z Qe gAi] )
1,j =1 i,j=1 k=1 ¥q PyP;

— mHUm,
where H = 0. The bracketed term is non-negative and U, and -H are positive

C, VY >0Cand VvV > 0. The syste

in the neighborhood of the rest point.

Exgmple 13, 7 Nuclear Reactor Dynamics

This example deals with the kinetic analysis of a nuclear reactor. The
knowledge of the inherent stability of the reactor and the character of its
responses to. suddenly induced changes in reactivity are important relative to
effecting the optimAl design of control systems. The system of nonlinear
equations for a class of homogeneous reactors, neglecting the delayed neutron

effects, is

d log P = - _o& 5o
dt 4 T,X >0,

ar_ .
dt € [(P - Pej’
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where
E = reactivity,
P = total power generated in the reactor > 0,
P, = total power extracted from the reactor,
T = reactor temperature (T = § at the feactor's equilibrium point),
= X = temperature coefficient of reactivity,
T = mean lifetime of the neutrons,
€ = thermal capacity.

The two operating conditions which will be considered are
(A) Constant power extraction: P, =P, ,
(B) Newton's Law of Cooling: P = A (T-To)
where P, > 0, A D>O, T, < 0, and T, is the ambient temperature of the
surrounding medium.
The problem is to study the '"stability conditions' of the equilibrium
point (P, T) = (P,, 0) for operating conditions (A) and (B). The system

equations can be thought of as describing the motion of a sphere on a surface

where (- log P) is the horizontal component of '"displacement'", «T 1is the
T

corresponding "velocity" comporent, T is the corresponding "acceleration"
T
component, T € is the "mass'", and (P - P,) is the generalized "forcing"
=3
function. The candidate for the Liapunov function is the Hamiltonian or

total energy of the system. The generalized potential energy is

Log P

(P - P,) d (Log P) ,

Log Pgq
and the generalized kinetic energy is

€ x 2
2 /t: T .
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Thus, for this conservative system)the sum of the above two terms is a constant,

Log P
V= f (P -P) d (LogP) + XE 2 _ g,
2T
Log Peo

where Co is a constant determined by the initial conditions.

For operation (A), P¢ = P, = constant. Thus, the V - function becomes

V=P-P;, -P, Log P/P;, + XE€

2 =

where C, > O in a ne¢ighborhood of (P,, 0). Since V > O and constant for

all t > to, then V is positive definite and V = 0. The system is stable in

the neighborhood of (P,, 0) if P, > O and for any T.

For operation (B), P = )\ (T - T,) where T, £ 0. Thus, the V - function
becomes
Log P
V= P->\T+>\To}d(LogP)+°<€ T2 = Co;
27T
Log Peo ’
or using

d LogP A,
— AT d(L°8P)=’>\T{dt }dt 2

= T ™ dt
we have
t
PXS
V1=V-rt— Tzdt=P+)\To+>\ToLog{-P}+ xXE g2
o LTo 27T
t
= Co — XX 2 dt,
T

o
Since {,P + \To + A To Log) ATo(+ 2T

is positive definite for P > 0 and all T and since \.71 = - 2\3_(_ T2
T
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is negative semi-definite, the reactor is asymptotically stable in the

neighborhood of the equilibrium point ( — >\To, 0 ).

Example 14, (g Heterogeneous Reactor

In this example we consider a heterogeneous reactor. The dynamic
behavior of a heterogeneous reactor with unit average power and consisting

of n - media with heat generated in each medium is given by:

n
d Log P _ _
dt ‘ZICXJ- Ty, > 0,

n
€1 = - - E -
iTi 7 ®-1 S xij (Ti Tj)’
i =
i1=1, ..., n)
where
P = P(t) = _ reactor power > 0,
stationary power
Ti = Ti(t) =

deviation of the temperature from the equilibrium
temperature in the &edinm,

temperature coefficient of reactivity,
- O(i = mean life of neutrons

th
éi = heat capacity of i7" medium,
7’( 1 fraction of power generated in the ith medium,
Xi i = thermal conductivity from the ith medium to the

3B medium.

Also, the effect of delayed neutrons is neglected; xij = in 4 and
n
2

-s--Tn =o.

1. The null or equilibrium solution is P =1, T} = T =

[
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The stability analysis of the null solution will be discussed for the

th
case of two mediaj the analysis would be similar for the n—  order reactor.

The defining equations are

doe B) - -ofjry —T,

dt
€1, =71(-1) - X (17 - Tp),
€gr, =Y (-1 -X (1, - Ty,
where X = X,, = X,; and'?l +372 = 1. The above equations are simplified
if we change the variables as given below:
Q= &1y +61,

T= T -T2,

]
"y

P
& = X1 + X3
Q

> 0,
€1 + €2
€1 +€2

The new system is given by:

i-ﬁ‘.?&..g =—(TT°é:2 >
t

dQ
dt

4T - - - &, T,
dt @1/61 721622 @-v ° !

and the null solution is

L]

P-1,

(P’ T’ Q) = (13 o’ O)"
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A Liapunov function of the above system is formed in the following way:

d Log P P
P dt Sp) P = p,

thus,
dviy = P d(Log P) __ d(Log P) + &0 (.1 + 6';- T T
dt dt dt - Q 1 -N2
’7 /él 7( /62
= P — d@es® | 4(1/269¢%) dg’z"'nssl -7M2/€2
dt dt t
='&%%-LogP+1/26‘ Q2 + 6; T2
Q 20\1/€1 - 72/€2)

=- {’-1' €, T2
"71/61 -'72/62

The null solution is such that at this point Vy = 1; thus, we choose

V =V; -1 as a Liapunov function. If 71/é1 >-72/52 and
O<162 > Oé 61 , then V is positive definite and \.7 is negative

semidefinite. Therefore, the reactor is locally asymptotically stable if

(1))71/51 >,/ €, .

(2) L
1 62 >°<2 €

Example 15, [9] Homogeneous Reactor

This example is a simple stability problem of a homogeneous reactor

where delayed neutron action is considered. The defining equations are

n = k-6 n + Mc,
L

¢ = n8__ )ec,
L

e
[}
o)
=
]
aq
[ ]
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where

n = neutron density,

c = delayed neutron precursor concentration,

T = reactor temperature,

K = reactivity,

8,1, , a , r = physical constants.
Since n and C are positive or zero, a candidate for the Liapunov function

is

<3
I
=}
+
0
+
Vel
S
2
NS——
-
N

where

l
%

v =
Thus, if K, £ 0, all solutions must eventually reach the origin in the

nCT - space; thus, the reactor eventually shuts off.

Example 16, [].Q "Newton Law of Cooling’ Reactor

The kinetic equations for a Newton Law of Cooling reactor model are

n = K n,.
L
T = an - gT,

K = K, — Fl(T) -_ Fz(T),

F1(T) = odd function of T,

F5(T) = even function of T,

F2(0)=0aa >0’g >0’L >0

|F1(T)| + ,FZ(T) | # constant.
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Analyzing the stability of the equilibrium solution, (n, T) = (0, 0),
gives, "in the small", the following:

(1) for K < 0, the system is asymptotically stable in the small,
(2) for K, > O, the system is unstable.
If the nonlinear terms are now considered, Liapunov theory produces the

following results,

(1) Choose

<
[
i

Lan + {Fl(T) - F,y (T)} dt,

where

Vi

ank, — g {Fl () + Fy (T)} T;

resulting in the following,

n =T = 0 is asymptotically stable for all initial conditioms when K, < O

and {Fl (t) + Fp (T)} T > 0 for all T. Also, if K > 0 for any temperature,
or if K, > 0, and if {Fl(T) + 7, (T)} T < 0 in the neighborhood of the

origin along the T-axis, then n = T = O is unstable by Liapunov theory.

(2) Choose

\/]

]

T
Lan + /Fl(T) dr,
o

where

.

v

ank =~ — aF, (T) n - g Fi(T) T ;

resulting in the following,

n =T =0 is asymptotically stable for all initial conditions when K, < 0
and F{(T) T 2> 0 and Fp(T) > O for all T. Also, if K >0 for any temperature,

or if Kb > 0, and 1if F1(T) T £ 0 and F2(T) £ 0 in the neighborhood of
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the origin along the T - axis, then the "shut-down" solution is unstable.
There are other examples of Liapunov theory being used in the reactor-
field, such as, references [___13, 14, lfg] .

Example 17, [11,12] Continuous Medium Reactor

This example considers the dynamic stability of a continuous medium
nuclear reactor. The Liapunov theory of ordinary differential equations
is not directly applicable but the authors use a Hamiltonian, a "Liapunov-
like" function, in their analysis; thus, their example is presented here.

The physical assumptions considered in their problem are listed in
reference [1;] . The problem is the continuum extension of the n-distinct

media problem considered in a previous example. The governing equations are

N
d Log P
dt B J o<(x) T (x, t) dx,

PR
e - Wz(x) {P(t)-l} + xﬂg

where the thermal conductivity, X, satisfies
0 < X 2 constant < £ 1,

(x) 2 0,
"’Z (x) >
P

T = temperature,

0,

= power of the reactor,

and the functions o (x) and '7 (x) are of the same order; this means
physically that the heat is generated predominantly at locations where
the local negative temperature coefficient is large. The equilibrium solution

is (P, T) = (1, 0). Thus, the problem is to find the sufficient conditions
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for damping the power oscillations of the reactor in the neighborhood of (1, 0).
Because 0 < X < <1, the first approximation T; and Py for T and P

must satisfy .

t

T, = 'V((x)‘[ {Pl - 1} dt.

For this approximation the motion about the equilibrium point can be

characterized by a "Hamiltonian" or a "Liapunov function", H; , which is

constant in time and is defined by

1 d Log P ‘
H] = 2 dt + X (x) "Yl(x) {PI - Log Pl} dx,

where the first term on the right is a generalized kinetic energy and the
second term a generalized potential energy. From the first 'system' equation

and the expression for Tl’ the time derivative of Hy is shown to be zero.

The second approximation is obtained by substituting Tl into X QZT

ax 2

of the second "system' equation; thus,
t
Y
x a?r _ (x) {P - 1} dt
= X 1 .
57 1
The Hamiltonian, Hp , is constructed in an analogous manner and is positive

definite. The time derivative of Hj is

t X

Hy = - | X d Log P1

dt o

4
(P1 - 1) dt X (x) ’? (x) dx,

where the term in { _— z is inherently negative because of the first

"system' equation. The integral in Hy can be written as:
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X X
j °<(x) .rz”(x) dx 111?:10 _}1_;_{ fo((x) ’y‘( (x+h) dx +
x x

+ f°<(x) ”f( (x-h) dx — 2 / X (x) '72 (x) dx ,

where the final integral on the right dominates the sum of the other two

integrals because o (x) and ‘rl (x) are of similar ordering. Thus,

X R
]o((x) ’YZ”(x) dx £0 and Hy £ 0,

which implies that the oscillations of the reactor about (1, 0) are

nonincreasing.

Example 18, [5] Motion of a Projectile

The stability of the rotational motion of a projectile is analyzed by

Chetaev's method of linear combination of first integrals. Let @ be the

angle which the axis of the projectile forms with its projection upon the
vertical plane of the line of fire. The angle o( is measured between the
above projection and the trajectory of the center of gravity. It is
assumed that the center of gravity moves linearly and uniformly. Other
terms in the equations of motion are:

C = polar moment of inertia

A = moment of inertia about transverse axis through the center of gravity

=]
i

projection of angular velocity
e = distance from c.g. to center of pressure

R = forward resistance.
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The equations of motion are

.2 L ]
A g+ A X sin@cos@ — Cn o cos @=eRsin@ cose( ,

A X cos e - ZAc;(ésin @ +Cné = eR sin oX_.

The equilibrium solution under comsideration is X = X = 8 = @ = 0.
Thus, the above equations can be considered the equations of distributed
motion about the equilibrium position.

The first integrals are the energy integral,

A .2 .2 2
Fi = 2 (@ + cos @ ) + eR (cosdcos@-l),

and the momentum integral,
Fp =A( ésinoQ - é(cos Ig sin @ cos X)) -+

+ Cn (cos X cos @ - L.

Both 9F1 and 9F2 can be shown to be geroj thus F1 and Fy are constants,
dt dt
that is, first integrals. Neither F; nor F, is definite with respect to

sign. We now form a new first integral:

V=F1‘>\F2

I

2 2
1/2 {Aé( + 2A>\o.<@+(6n>\—-eR)@} +

2 2
+ 1/2 {A@ ~ 2A)8 K + (Cn A— eR)<>Q;Z +
rd
+ zterms no lower than 3 order}
V, locally, is positive definite if the quadratic forms are positive definite.

Therefore, for stability we require that

*>n2 —4AeR >0
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which gives the lower limit of the angle of rotational motion of the pro-
jectile such that the axis will follow the tangent to the trajectory of the

center of gravity. We have unstable motion if
2 2
Cn — 4 AeR 0.

Example 19, |1d Liquid-Filled Gyroscope

In this example, the necessary and sufficient conditioms for stability
are derived for the motion of a gyroscope containing an ellipsoidal cavity
filled with an ideal, incompressible liquid. The terms involved in this
problem are:

L1, Lz, 0 = Components of the angular momentum of the moment
of the gravity forces,

P> 9, ¥ = Components of the instantaneous angular velocity
of the gyroscope,

P1s> 491, ¥] = Components of 1/2 rot V , where V is the rectilinear
velocity,
A1, C1, Ay, Cp = Moments of inertia of the liquid and solids.

€ = Eccentricity of the ellipsoid,

a=b, ¢ are semi-axes, and Ay = (1 -€) Cy,
M = Mass of the liquid in the cavity,
P = Weight of the system,

h = Distance from fixed point to c.g.,

=
[
>
N
<
w
]

Direction cosines of the line of action of the
weight vector in the given coordinate system,

where

L, = ?h fyand Ly =-Ph¢ ;.



The equations of motion are

& =-nlen—a +oe]

-

-

n = (1-¢€) (qu --qlp),

Ap + Apy + q (Gr + Gr) = 1,
Alé + A251 - p(Cir + Cory) = L2,
Cit + Cpry - Az (p1a - q1p) = O,

<
-
I

- q 3,
;%2 = P 2/3,
X:a ‘la/l‘ PXz.

For the case of a very thin shell, the shell's moments of inertia are neglected.

Thus, assuming that the fixed point is the c.g. and that

Ay =_M (a© +¢) », G =0,
5

¢, Mal, Ap = (1-¢) €,

the middle three equations, above, reduce to

1 + &
- (= 1'1 qu(l'é) + 6q3 ’
1 +€ P(1-6)+ép .
€ (ry 1

The first\integrals of the system are

g~
I

fal
]

ot e Sl R ~ )

1 + & 2
Fp = p2 + q2 - & n s
1 + € 2
F, = p12 + q12 +1 - ¢ v,
1 + 2€ r.2

ref
w
I
N
5]
ael
-
+
N
0
L£Q
=
+
=
1
M
=




b
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Eliminating r1 gives

1 -
Vi = p2 +q + e (p2 + q12)
1l+2¢€ 2 2
Vo = 2pp; + 2qq; - 1+ ¢ (pl toq ) -

The linear combination
V=V1+>\V2
is positive definite if

4+ 5€
a6z 20,

L ]
and V = 0, This gives the necessary and sufficient conditions for

stability)with respect to the variables p, q, pj, ql)of the motion

of the gyroscope about its vertical position of equilibrium. These

conditions are given as

(1) € >o0y(a’>ch,
or

(2) €«<- 4/5»)(c2 > 9a2) .

Example 20, |li! Gyroscope on Gimbals

This example considers the sufficient conditions for stability of motion

of the regular precession of a gyroscope on gimbals. There is assumed to be
no frictional forces on the gimbal axes, only gravitational forces are
present. The important terms are

© = angle of nutation,

angle of precession,

Rl

angle of rotation of the gyroscope,

A, B, ¢ = principle moments of inertia of the gyroscope,

»
Pt
&=
=
Q
=
Il

principle moments of inertia of the inner gimbal,
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Ay = moment of inertia of the outer ring
p = weight of the gyroscope and the inner ring
(0, 0, z,) = coordinates of the center of gravity.

The equations of motion are

Cg___(¢.+')4.00s®) = 0,
dt

'2 Ad > L
(A+A1)G - (A + B, -cl)}b sin © cos @ + c<¢+)LCos@) ’}Lsin&-

PZ,8in 6 = 0,

. . . < . 2 .
ﬁ-t— {(A+ B¢) 74:1,,2@ + c(¢+ }Lc°s@)cc.s‘@+c1‘)LCOx@ +A2}A}= 0.

The first integrals for this system are

K = (A+BI)7£xin2& + C( 7S+ }LCosa) Cos © +
+ cl‘)iCosz® + Az”y'»,
ry = 75 +')L'Cos S,
h = (A +A1)é2 + (A+Bl))'42 sinzs +Cl‘4,20082@ +

+ C ( ?S#-}ZCOSG)Z + AZNI‘L2+ 2pZ Cosd.

Consider the equilibrium condition defined by:
= @°=constant

O

\é- O, ©

'\ﬁJ = constant

~
]

W = }5-}- }L Cos O = constant
where

2
g'(A + By - Cl)'lﬂ) Cos ©, -C u)‘ﬂrl- P EO‘E sin 9, = 0.

For regular precession, O,1is not equal to O or TT .
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We now apply the following transformation to the equations of motion:

@ @+

| (O
-§1
7"‘{1"“52,

r=LU+€3.

The first integrals corresponding to the new coordinates,

SUCTHE RIS

(A+A1)gl+{ JC-pZCos @‘S"’( + E(gz + szg) +

Vi

+2F152,'§.27z+ c(§§+ 2u)€3) + qubz‘r<+
P Z,(§in (90)’)’1 + higher order terms,
V2 ={D ‘%—"9 Cose,:% ‘7\2 + Faﬂnz-cw(ﬁn 90)72"’

+E 52 + F §2Y+ C(Cos G,) §2 - C(#in 8) 7(%‘2 +

+ higher order terms,

V3 = g 3 = constant,

where
' U (Cos? 2
’ D=(A+B] - C)UL(Cos" O,- n" O, ) ,
b 2 2
’r E=(A+ Bl)sin @o + C1Cos"Q, + Ay,

F = (A + B]. - Cl) Cos ®o sin @o.
A candidate for a Liapunov function is 2 2
C v
V=v; -24LVv; + 20(SLCos &, -W) V3 + K+ By - ¢, 3

where V = 0. V is positive definite if
Db - ¢ willcos G+ p Z,Cos § < 0;

this is the sufficient condition for stability of the regular precession.
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If we now use the equation given above, namely,

F ’1]1)2 - c wUl sin o, +pz, s8in 6, =0,
to define O,, the stability condition for the regular precession of a gyroscope
on gimbals is
A+3B -¢€¢ > 0.
This stability is with reference to &, é s ')(: and r.
It can be shown from the above Liapunov function that if &, = 0,
the necessary and sufficient condition for stability of the unperturbed
motion is
(A + By - Cp) '\ﬂ/z -cwdb+ pz, < O.
The unperturbed motion in this case is the uniform rotation of the outer
ring about a vertical axis with angular velocity ~JU and a uniform rotation
of the gyroscope with angular velocity (U .
Consider the above case, &, = 0, with the friction of the gimbals
being taken into consideration. The equilibrium solution is
©-0,6-0,¥=l, g =-w, = w -U.
The transformation equations are
9. *rz,é=’7:(= £, ')‘.="-ﬁ/+g2,
W+

?

and the Rayleigh dissipation function is

°
b

2 2 2
2f*=ag+b§+c§+2eg + 2f + 2g s
1 2 2g S % 1 gl g 2
where..the constants a, b, ¢, e, £, and g are such that f* is positive
definite in g 1’ g 2? é . Thus, the variational equations for

the perturbed motion are
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(A+A1>§1' [‘A+Bl - ANZcwdb+p Eo_-]“'z=
=-(@@§,+s £,+ £6),
(A2+C+C1)'5:2+C§ =-@S1+b5,+ b))
c(g+§2)=-(f§1+ e'§2+ c'§>.7

We now consider a Liapunov function of the same form as before:

m-@wra) 52+ arc v o) €0 [wrs, —c) N -cwdl+

- 2
+p2‘cﬂ"((z' + ¢ &+ 2c§2é+2€(A+A1)"z gl,

where € > 0, and

‘.1=-{l:a—€(A+A1)] gi + 83+ c 8%+ 2e £,04

+2£F b+ 28 §1§z' € [SA+B1 -cl)JLZ-cde+pZoJ?(2+

+€'z(a§1+ g§2+f5)}.

Thus, W > 0 and W < O if

2
(A+3B; -Cy)JUL - Cwl+ p 2o <'S(e) < 0
for sufficiently small € . Then the motion, @ =0, @ = 0,
‘}(’ =1ﬂ.)and ¢= W - YU yhich is stable without friction becomes

asymptotically stable when dissipation forces are present.

Example 21, flS] Motion of a Tippe - Top

This example considers the stability of a "tippe - top"; that is,
a top with a spherical base whose center of gravity is below the center of

curvature. The important terms are
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P> 9, ¥ = projection of the instantaneous value of the angular
velocity on the moving coordinate system,

Xi’ a/ 2 6/3 — direction cosines of the direction of the force of
gravity, mg,

A =B, C = principal moments of inertia of the top,
Lo = angular momentum of the top about the c.g.,
dr = velocity of c.g. = (u, v, w),
dt
a = radius of the sphere,
L = center of the sphere to c.g.

The equations of motion are

Ap + (C-A)qr + ma qu‘u— - m(aZ(3-L)\;=mgLX‘,
AL +@A-0pr + maYg-b) & -ma ¥ Wr=-mg L (),
cr + ma?{lx'/- ma 3/21’1 = o0,

w = a (b/zp - (qu),

w = aly-L¥s - ad,m

Ve a¥ir- @ls-b)oe,

Yror ¥ p- 0 ¥

You o ¥s- e ¥,

Uoma ¥i- 00,

From these equations there results one energy integral, two momentum integrals,

¥ 2 0 ’2=

and the relationship

Our problem is to consider the stability of rotation of the top about its




- 55 -
vertical axis; that is, the unperturbed motion is
u=v=w=20,

Pp=4q=0,

L]

]
a]

o

1]
O
Q
=]
[}
3
(a4

The transformation equations giving the perturbed motion are

q gz’r=ra+€3a X1=Y1:
x/ ﬁz > OJ].= To +'f§4’

b= £ .,
b’z-ﬂz

é' g’ M+ "7 + é

From the perturbed equations, the first integrals Vi, Vo, V3, V4 are formed:

v, ={A + m [a? -zaL(1+»z3)+L2]} (57 +E3) +

+ ngL’)ZB-i- 2 ma L % 4(1-(0+§3) + {c + ma [a +
-lba + z'vl%]} @, g3+ g’i) — m a2 g’4 @2 ry +§4).
V, = Aa £ 4+ (C-A) ar°’723+ [C(a-L)-Aa] §°3+
+ @-nak, 73,

vy = I:(c-A) € +ma )-CmLZJ ézs’f

23 -

h)

(

r,| (€ - &) (C +mad) - om L2] £, —2€,max,; [c@al+

- Aé] + Am az é;f;
2 2 2 .
”(1*“’(2* 27{3“’(3
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The choice for a Liapunov function is

, |

where if ‘

2(mgL+7))[C-A +mL(a-L)‘-] —’maroz[ a(A - C) +AL-m(J2(a-L):|
M- 2 .
ar, (A-C) [C+ma (a -L):\

and
Caroz- (a -L)[_—m L(g + a r°2 ) +7):|
A - ar:z,\'(A-C)[C+ma(A-L)]
the linear terms in V drop out. V is positive definite and thus the top is

stable about the vertical axis if

(2) 4 YA - A25 >0,
2

(3) AA4 -A3 20,

4 P> o0,

(5) A+ > 0,

A + m(a ‘L)Z >

>
—
!

c+2ma2+//C[C-A+m(a2-L2)],
2A3 = ca[/\ - 24mr, (a-L)J >
A4=r2maz L+ya + P+ I

>
N
[l

o

As = a[-2mr, @-DA+yo +
+AQHur, 8 +N)] .
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Example 22, liﬂ Motion of a Gyrostat

The problem of a gyrostat consisting of the rigid body T; and the

rotors To , whose axes are fixed in Ty, is now considered. The particular
problem being analyzed is a free gyrostat in the Newtonian force field.
Let O be the origin of a fixed Cartesian coordinate system,g',‘? , and
é; , coinciding with the center of gravitation attraction. The gyrostat
moves in a Newtonian central gravitational field, and the axes of the
moving coordinate system x, y and z coincides with the principal central
axes of inertia of the gyrostat. The terms used in this problem are:

A, B, C = principal central moments of inertia

M

mass of gyrostat

mass of T

qu, 4:2,’Tf3 = direction cosines of the radius vector
kl, k2, k3 = components of angular momentum of T,
P, 4, T = components of angular velocity of T}
8/1, 5’2, 6/3 = direction cosines between xyz - system and é -axis
U = Newtonian potential.
For a free gyrostat we have A = C, kj = kg = 0, ky, = k(t),

where k(t) is a bounded continuous function of time. Thus, the equation

for U and the motion equations are given by

A@g 34
U=y R 3 I:(B-A)’EZ—E_:_Q.] ,
2R 2

3
. 9 =
TR T T

- 5% 7

L X J
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A+ A-DBar - k() = 3 @a-pT,T,
R b

Bq + l.c(t) = 0
4
At + (B-A4) pqg + pk(t) = g3 B-8T,T;.
The first integrals are
Bq + k(t) = H = constant,

i

o2 .2 . 2-] 2 2
Ml:% +7 + + A (p +r) — 2U constant,
which is the energy integral, and the next equation is the angular momentum
integral,

M[g 'V( -7 g’]+ ap ¥ 1+ (Bq +K(t) 3/2 + Ar X3 = constant.

Further, we have the trivial relationships
2 ~2
Uo+ T3= 1,

Y2+ 02402 - 1

The introduction of spherical coordinates, whose origin coincides with the
center of mass of the system, admits the following form for the particular
solution of the equations of motion:

p=r=0, q=B (H-Kk(t),

2( o0 =1 R=Ro, R=o0,
¥= o0 )é= 0, =Wt +F‘o))¢‘=w,
T 2= T sin—\ﬂ(t) /E'3= cosqjl.(t),
S = w— q.

These equations describe the motion of the center of mass on the circular

orbit)with radius R, and with constant angular velocity U); and they describe the
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rotation of the gyrostat about its axis of symmetry with angular velocity qf)
while the rotor performs a prescribed motion such that Bq + k(t) = H.

We now determine the Liapunov stability of this non-perturbed motion.
First we change the variables by applying the following relationships
to the equations of motion:
X2= l1+%x R = Ro + X3)¢ = w+ ;:4.
From the transformed equations we get the following first integrals

2 2 o2 2 2 ,2
Vi = MRo +HX3-HR°UJ'}L+

6 (B A)ﬁ
:I"s +

2
+[2"R°w+ R5 r?

6(B - A)A 2
+|;w " Ro R o 3

—

2
0.2 34 -T2
4 [ - +
+ 4HR0U.)X3X4 + MRo x;, + 2MRo x; + R3
°
+ A (pz + rz) + higher order terms = constant,

V, =MRZ %, + 2MRoWx; + 2MRo x3%, +Mwx; +

MRozw'}L2+ A (p Yl +rJ3) + Hxy + xp +
+ xyXy + higher order terms = constant,
V3 = x; = constant, V;, = 12 + X32 + x22 +  2xy.
The stability of the non-perturbed motion is investigated by constructing a
Liapunov function by Chetaev's method. The candidate for a Liapunov

function is

W=V -2wW(Vy -V3 ) + H WV, + )\1V22 +>\2V32,
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where )\1 and >\2 are constants. W is a positive definite form if
B> A LH > AL,

and if all primcipal diagonal minors of the determinant of Cij are

positive:
Cij = Cj1 i, j =1,2,3,4,
) 202 i 2 3 (8 -M4
Cll— 1MRO(.U - w - RO'S

2 3
Cyp = 2>\1M Ro U.), Ci3 =2>\1MR0 HU.),

2 4
Cle = 2 A {MRoi), Cyp = MRo +)\1M2R¢_ ,
023=>\1MR<?;H, C24 = >\1MRc2>,C33 = Hw+>\1H2,
Cyy = ‘U.)+>\1 H, C44=)\1+>\2.

In most practical cases )\land >\2 can be so chosen such that the conditions

on Cij are satisfied. Thus, the non-perturbed motion of a gyrostat with one
rotor, whose angular momentum satisfies the condition
Bq + KR(t) - Aw >0,

is stable.

Example 23, [éd Iiquid-Filled Rockets

This problem is concerned with the stability studies of continuous media
with respect to a finite number of parameters which describe the motion
through integral relatiomships. Examples of these parameters could be the
coordinates of the center of gravity of a bounded volume of continuous medium,
or the projections of the linear momentum of the medium on certain axes.

The time variation of these parameters is described by ordinary differential

equations. The stability of the motion of a continuous medium with respect
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to the above mentioned parameters will be called the conditional stability

of the motion of a continuous medium.

The particular example being considered is the stability of motion of
a rotating solid, with a liquid-filled cavity, with respect to parameters
describing the motion of the solid and the projections of the angular
momentum of the liquid. This solid is a free solid with a completely or
partially liquid-filled cavity. The liquid is ideal, non-compressible and
homogeneous. Also, the central ellipsoid of inertia of the solid is an
ellipsoid of revolution (A = B, C), and the cavity is a body of revolution
whose axis coincides with the axis of the ellipsoid. If the liquid has a
free surface, the pressure at the surface is assumed constant. The liquid
is such that its velocity and pressure are continuous functions.

In stability problems dealing with liquid-filled bodies, we are inter-
ested mainly in the question of the stability of the motion of the solid
body. The question of the stability of the liquid is only important in
so far as it effects the body as a whole. In this connection it is matural
to consider the question of the stability of motion of our system relative
to all variables which characterize the motion of the solid body and the influence
on this motion due to the motion of the liquid. This leads to the conditional
stability mentioned above; that is, the stability relative to certain ones of
the variables but not to all of them that determine the motion of this mechanical
system. (There are an infinite number of variables because the liquid is a

continuum. )
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The terms used in this problem are
0,X,Y,Z2; = fixed axes; 0, at the center of mass
OXYZ = axes moving with the saolid
b/l’ 62, (3 =direction cosines
T; = kinetic energy of the solid
Ty = kinetic energy of the liquid
Vi, Vp, V3 =velocity of point O
U.) 1> Wo, W3 = angular velocity
M; = mass of the solid

Vo vy, v, = velocity of fluid particles
T = volume of the liquid

81> 89183 = pmomentum of the liquid
e = density of the fluid

L1, Ly, L3 =moment due to air pressure

U==-a YB = force function of the air pressure.

It is assumed that the center of mass of the whole system is in
rectilinear motion with constant velocity; this is the well-known approxima-
tion to a small segment of the flat trajectory of a missile. For this missile
it is assumed that only the overturning moment of the forces of air pressure

act.
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The equations of motion of the system 21 relative to the center of

mass are
AD) + g + (C - AW W+, 93,9 ,= a Xz,

Au)z + éZ + (A - C)U.)3w1+ U)3 gl-q 83~ - aX]-,

Cwy + g3 +Wgy -wg = 0,

d

dt [U—x +UL W, 2 U il +U)2[U3.- +U3 + Wy -t
- Ll)3 E’y"' vy +U)3x - wl-}] = -

_:_11? vy + vy +0.)3x-u.)1%J +u)3[vx + vi +IL§2-UJ3 y]

-LO]_ vy t vy +(A)ly-U)2x = - _1_ DE s
e 3y

_q__|:v‘75 + wg3 +Wiy - zx} +u)1[ vy + vy +UWix Wz
dt
‘U‘)Z[Vx +vy +Wpz- “)33r:| =- _1 9p ,

e dz
EAS IV Qv _
— =2 A 2z = 0,
ax ay + z

3;1 =, 5/2' W, b/a ’
Xz =L‘)l b/3‘ u):«x X1 A

I =(")2 ()/1'(")1 Xz

Applying the general theorems on relative motion of a mechanical system
about its mass center, we obtain some of the first integrals of the equations
of motion of a solid with liquid in its cavity. The total kinetic energy of

the relative motion of the system is

Ty + T, + a 03 = constant,
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T o= V2 {M (W% 32, U2 + Al wE+ wit) + waz )

Ty = 1/2 {@f(‘l}'xz + v—yz +'u‘;__2 ydrv ‘,
T

The integral of areas is

(AW; +g1) (1 + (AW, + gy) Xz + (Cuwy + g83) X3 = constant

where

g = 6f(y’lf -2y ) dv,

g, = J (v - xYp) 4T,
and

g3 = @L(xv'y - yvz) dr. ’
Since A =B and L3 = 0, then u)3 is a constant
and

g = UJCI (x2 + y2) d © = constant.
T

Now we consider the stability of rotation of the solid and the correspond-

ing steady motion of the liquid in its cavity at the equilibrium point:

W= Wy= 0, Wy=W, ¥, 8y = o, Xfl’

'U-1= 'U_2= 'U'3- = 0 , g1= 82 = 0 s g3 = g.

For the perturbed motion we shall substitute

(4)3= u)+§, 83 = g+‘2, b/3= 1 +§.

Thus, the first integrals given above can be written in the following form

for the perturbed motion:

: 2 2 2
Vi = N (V7© +V +VU3T ) o+ A(U)12+u322) +

+ C (gz-:- 2wE) + 2T, + 2a8,

Va

AW +8;) Yl + AW, + gz)f2 +c &+ Y(+ c(u)+§)§

+ g +M§
V3 =Y12 + 22"'52"' 25-: 0, Vy4 =g = constant.
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Also, we consider the function

, 2 L
Bo=1 (245557 )+ A @Brw?) + e 3 2t 2w £) +
0 2 )
+|s [(g] +e; +287Z+7L)+285,
where S is proportioned to the greatest principal moment of inertia of the

liquid about Q. By Liapunov's inequality

2 2 2
we have that H} £ V; = constant.

Thus, as a candidate for a "Liapunov function" we consider

V=H + 2\V, -(a + COXN+ g)) V3 +

2
- 20(WH+ NV, + C(C - A) V4
A

where )\ is a constant. By Sylvester's criterion the quadratic part

of V is positive definite if there exists a >\ such that

1) @A + )N\ + (C W+ ) + a< o
The inequality (1) is possible if the left hand side has two distinct real
roots >\ 1 and >\ 2 § that is if

(2) (cw+g)2 —4& (A+s) a > o0.
The function V is positive definite in all its variables if (2) is satisfied
and if

(3) (g/s +)\)vz>,o ,

where >\1 < >\ < >\2 . By the theorem stated in the theory part
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of this section, and by the strength of the following inequality

VéV1+2>\V2-(a+Cw>\+g>\)V3+
C(C - A Vz |
- 2C (W+)) Vo + A 4

we conclude that the unperturbed motion of the system is stable with respect to

{'L)l ’Qz ’U% »>81:82:83 1{1 s Xé ) XB,V]_ ’sV2,V3.
Example 24, l22I 23, Zél Magnetohydrodynamics

In reference @é], Bernstein and others proved an energy principle for

magnetohydrodynamics based upon the series expansion in terms of small dis-
placements, ‘g (x, t) , of an ideal conducting fluid along a complete
system of normal vibrations. 1In [23 and[?@ , Stepanov and Khomeniuk produce
proofs of the stability theorems of the equilibrium configurations of an ideal
conducting fluid by using Liapunov functions.

In [éﬂ , Bernstein started his derivation from basic fluid motion equations
and Maxwell's equations in Electromagnetic field theory. The fluid was des-
cribed by the Lagrangian description; thus, all quantities in the above basic
equations become functions of Io- For the small displacement analysis, the
displacement r of any fluid particle, Io, at any time t was expressed as

£ -+ 5@t @, = o
The resulting equations of motion for the small displacements were finally

reduced to

€°_<§_=E.(_§)’
where F must be a self-adjoint operator. That is, for any two vector fields

ﬁi and 0 the following equation holds, the integration being over the entire

volume in question,

f"g. F (§)dr =f_§_’g (z)d’t‘.
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The problem of Bernstein was based on the fact that it is possible in
principle to follow in time any small motion about an equiliprium state in
which the fluid velocity is zero. The central problem is then to determine
for a given equilibrium configuration whether such a small motion grows in
time. If the details of the fluid motion are not needed, then all one has
to do for stability studies is to examine the sign of the change in the
potential energy, which is a functional of _2‘:_ . The theorem considered
in EZ@ says, '"the system is unstable if and only if there exists some dis-
placement é which makes the change in potential energy negative."

In referepce [2@ , Stepanov and Khomeniuk, by the direct method of
Liapunov, show! that an equilibrium state of an ideally conducting fluid
is unstable if there exists displacements of the fluid _S_ (r) from the
equilibrium position for which the potential energy of the system decreases
(U (5) <0 ). These authors use the same equations of motion as

Bernstein:

e £ -,
where F is a linear self-adjoint operator. F 1is defined by
EQ = IEW +YV6rEH +
1 1
+ 37"] (rot rot (ﬁxl_i) x H + [Z;r 1:01:_1‘J><
X l;\:ot (i X gj,
wheree, P » H are equilibrium values of density, pressures of fluid and
magnetic fields, and X is the adiabatic exponent.
We assume that the fluid occupies a finite volume V and is bounded by

surface S; the density e and displacement _é are zero on S.

The equation e _g_ =F (_é'_) has an energy integral

E =T+ U = constant,
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51 - ey

where

= %—\/e”é/lzdr, u = - 172
It is clear that .

T = U =0 for £ = 5§ =0,

T —»0, U —»0 for //_5;” —»0 and //ﬁ/ —»0,

¢ > o.
For any r in V let _5 (r) be twice continuously differentiable and let

- £ s So, Son

be a solution of C_g; é) satisfying

_,‘{ _g.o(_g), S_ =_§_o(_r_) for t = 0.

4

Definition
The equilibrium solution is stable ( _5_ = _'5‘._ =0 ) if for any
61, éz > 0 may be found 51’ 52 > 0 such that if
| £.0] < S 1 and ”_g.a(:)H <3, , then
[ £ ¢z 85 @ & ©f <¢, //ﬁ(t,z,ﬁa@),ﬁzz@// < €,
for t 2, 0.
Definition
The condition of equilibrium is not stable if there exists at least

one set of él, = 2 > 0 such that for any gl,gz >0 there
L]
always exist some _g_ o(r) and _S_o(r), I/__go@/[< J 1 , and
”_S_(;_)U < g o » such that at least one of the following inequalities

hold:

[ £ ¢ xS0, Sof>e,
| £ o L@ £of 2€

for at least one value of t > 0.

2,
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Theorem 1

If there exists a _E_ (r) such that U &) < 0, then the equilibrium
solution ( _S_ = _S. = 0 ) is not stable.
Proof (Qutline)

Let the V function be defined by

v H = pL e
and the time derivative is given by A4
=2 {T & -u (_3;)3

By hypothesis, \.f and V can have the same sign in the neighborhood of

.
_3_ = _'5‘_ =0 . The theorems on instability then conclude that the
system 1s unstable.

The next theorem investigates the influence of viscosity forces on

the stability of the equilibrium solution. The equations of motion in
this case are
[ X ] .
es-rd +: O

where the force of viscous friction fj equals
’aVi 2 J° 3 J ) Ay _J 3
£ - = [’L‘ St S A R

i, k, L = 1, 2, 3) (Sum om Kk, L),
The first and second coefficients of viscosity are "r( and S , and
vi = 21 . From the above equation of motion it is very easily

found that

%E[T+U:]=-w < o0,
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where

W (3)

2
!
]

Vi fi dr =
v

1 v ‘Avk — 2 8§ Qi 2r )v' zro
z[’([g;i T Slk'ﬁi‘;l ‘ +/§[§;§:\ ¢

v

Theorem 2

If there exists _g; (r) such that U {35'_ (;)} < 0 , then the
equilibrium solution is not stable even in the presence of viscous forces.
Proof (Outline)

We assume that the condition of equilibrium is stable. Choose

él, € 2 > 03 then there existsSl’ SZ > 0 such that if

"-SO(E)” <& //5()@// < S 2 , then for t > O,
e =tofof<e, | [l < en

Assume the V - function takes the form:

6 ¥k _2 4y Qﬁ_} dr
< :

viL £} - f e lE] - &) o + —%ﬁ S
5[

If _S_ satisfies the motion equations, then \.I = 2(T - U). There exists
* o - T -
£ *and § * such that (y=-T-U >0 and (7 > 0)

Since for t > 0,

Jece, = &5, EDll<€r € e g5 £ < €,
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then there exists a >\ >0 such that for t > 0

i L £, 55, i(t,;,_if,,..f:)z < X
if IL

“ax » 1, j =1, 2, 3, are smaller than some constant.

On the other hand, since for t >/ o,

T{ o £ -:)E+U{£(t,£,_{:,g)}£-/q< 0.
>

We find that for t 0,

)2/1 >0 for _ii: and _%_:
Consequently, for t ———» o0 sy V ——» oo ., This
contradicts the boundedness of V, thus the equilibrium is unstable.

From reference @ we obtain the theorems dealing with the stability
of the equilibrium solution. We are still dealing with ideally conducting
fluids. The motion equations are as Before:

e Lo v .
The solution of this equation which satisfies the boundary conditions and

the initial conditions g g @, _§_ _56(_) , at
t = 0, is denoted by g (t, x, f (r) R g_ (r) ). We assume that the

o
solution is twice continuously dlfferentiable with respect to xi, defined

for all t >/ 0. W, T, and U are defined as in the previous reference, I:Zlﬂ .
We now define two metrics which will be used to define stability in

the above system:

__(:)} gzdr+°( E’i_:lfo—ﬂz dr ,

6, { ek

"
Qﬁ
(o
g
N
oy
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where o 1is a constant. In the definitions which follow the numbers
€ > O0and S > 0 are always bounded from above by a positive
number < .
Definition

An equilbrium position is stable, if for any € 1, €& 2 > 0 there
existsfcl, SZ > 0, such that if

e, {Eo@)z <d. e §°®z<§2 |
then for allt > 0

61 { ﬁ.(ts X _g:.,)) —g-:O)z < él)‘€2 { ._g:_(ta X, -§-o’ éo)} < 62-

Definition
An equilibrium position is unstable, if there exists at least one of the
numbers & 1 éz > 0, so that for anygl > 0 and é'z >0, there are

always such dat.a .
Lo fo. 6Lt <d e (L] <5,

that at least one of the following inequalities

& {_é(t,;,_é_o,é_o)} 7€, 62{—5‘-“’5’—50’ E—o)z >€,,

holds for at least one value of t > O.

Definition

)
The functional V {_ﬁ_, _5_‘75 is called positive definite with

respect to the metric 6 {_S_ s _S._z , 1f V. =2 0 for all admissible

_E_ and i ; and if for any € >0, there exists >\ (€)ii> -0 such that V >,>\for any
s, _é_ satisfying the condition e{_ﬁ , _é_% > &

An example is the functional T { 5’_@); » kinetic energy; T is

positive definite with respect to the metric 62 2 $ g .
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We now consider the conditions for stability of the equilibrium posi-
tions of an ideally conducting inviscid fluid ('Vz = 5 = 0).
Theorem 3
In order for an equilibrium position of an ideally conducting inviscid
fluid to be stable, it is necessary that U(_g_) > 0 for all admissible £ (r).
Proof (Outline)

The proof is a contradiction proof; that is, U (§) is assumed negative
* —

for some ﬁ which is nonzero. The V - function which is used is

RSN I N L Ay L

The remainder of the proof is similar to theorem 1.

Theorem 4 (Sufficient Condition)

If U(ﬁ) is a positive definite functional with respect to the metric
€ 1{}_}, then the equilibrium position of an ideally conducting inviscid

fluid is stable.

Proof (Outline)
This proof is also a contradiction proof. It is shown that for any

€| s é?. > 0 and the corresponding §1 P O,gz >0 , the following

inequalities lead to a contradiction and consequently the system is proved

to be stable: for some t = 7~

el{ﬁ.(’r:_{s io’ S._.O[)z>/61’€ _g_(’t, L _g_o: 'i.o)} >/ € 2;
2
where

61{ ﬁ-o}< 1, 62 {_§5§<§2.
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The vehicle used in arriving at the contradiction is a V - functional

cfE il [Ep e LT

where T and U are positive definite functionals with respect to the metrics

€1 {__g_g and 672 {_g;g , respectively.

defined by

Theorem 5
If U( g) is a positive definite functional with respect to the metric

61 i_g_} , then the equilibrium position is stable with viscosity present.

Proof
The proof is similar to that of theorem 4 and the same V - function is
used, as well.

Example 25, [5i| Van der Pol's Equation

We consider the equation
a0 2 [ 4
x+€(1 ~x) x+x=0,
or in state variable notation
X =X,

2
X, -xl-é(l-xl)xz.

Since this system does not possess a time-indepéndent integral, a '"nearby"
system is considered, namely
3
[

X} = x, + € (x; - x )-I—f4 (xl, xz)

3
. 2
Xy = - X] - €(l - x1) %9 + fg5 (%7, %X3).

This "nearby" system possesses a time-independent integral if

“af4 (x1,%2) 3f5 (x1, x9) = 0.
—_— ¢+
‘Xl .axz
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To guarantee that the new system is "nearby", we must determine f; and fg such

that the cross product of the vectors (il s iz » 0) from the old and new systems

is positive semidefinite. This cross product (third component) is

: 2 2 2 2 2
X* =€x1 (1 - x]/3) +ex1xy (1 -x1/3)(1 - %y ) + xpf5(x 1, x9) +

2
+ x3£4(x3, x2) +€(1 - x 1) x9f,(x1, x2).

In the neighborhood of the origin, X* is positive semidefinite and

}fz, + }fs _ 0:\ is satisfied if
?XI —sz -
£y (xl’ xz) =0, 2

1
f5(x 15 %) = - ele (1 - l‘:-3__)(1 - xf) ;

* 2 2
A= éxl a - xl )
3
then
2
0 £ X, £ 3
Therefore, the nearby system becomes
. 2
xp=x+ €(x -x )
3
. 2 2 3 2
X9 = -x1 - €(l -x%x) x-€ (x-%x)(-x),
3

and its first integral is

2 3 42
h (x3, x2) = x1 + [xz + €(x1 - _:_{_1__)] .
3
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Let h be the Liapunov function for the original system, where for this
system

. 2 2

h=-26&x -x ).

3

Thus, the original system is asymptotically stable if € >0 and [xll < /3—
The region of asymptotic stability predicted by this analysis has the closed

boundary defined by

2
2 3
x; + [x2+€(x1-xl)] =3
3
for any given positive £ .
Example 26, |—5j A Symmetrical Oscillator
The describing equation of the system is
% + dx + x-x3 =0,

or in state variable notation
X1 =%
3
X9 ==-%x3 + x1 - dxy |
This system is symmetrical about the origin in xjxp - space. In this case

the nearby system is

:;1 = x9 +dxy; + f; (x1, %)
. 3
X9 = = x1 + %] -dxp + fg5 (x1, x3)

where af4 + @&f5 = 0. The third component of the cross-

3x1 3x2
product (as defined above) becomes
* 2
X =dxg (1 - xlz) + d2x1x2 + xl(l - xlz) f4(x1, xz) +
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The positive semidefinieness of X* and the conditions on f, and f5 are satisfied

if

2
f4( xl, Xz) = 0, f5 (xl, XZ) = -d xl .
Thus, the nearby system becomes
X] =1x2 + dxi

- x3 + x13 - dxy - dle,

»
N
n

whose first integral can be found to be

2

hj(x1, x2) = x12 [ (1L + dz) - x ] + 2d x1x9 + x22 .
2

We then consider h; to be a candidate for a Liapunov function of the original

*
system, where h; becomes

2 2
h; =-2d x; (@1 - x7).

Therefore, the original system is asymptotically stable if d > 0 and

2
X3 < 1. The boundary of the domain of asymptotic stability given by this

method is

iy

2 2 2 2 _ 2
x] l: (1+d)—x1 + 2d x1%9 + X9 —[:I-EZdJ.
2
We could also choose the unknown functions to be

f4(x1’ x2) =0

2 3
fs(xl, x2) = - d Xl - Xm > |

giling
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The integral corresponding to this choice of f; and fg for the nearby

system is

2 2 2 2
hp(x1, x2) = x1 |:(1 +d) -x3 (1 - d):l + 2dx1xy + X3 .
2

The cross product is positive semidefinite if d > O and ,x1, < |
thus, the resulting boundary of the domain of asymptotic stability of the
original system is

2 2 2 2 2d2+d+1.
X1 [(1 + d°) -._fl(l -dil + 2dx3xy + X 5 < 2
2

In conclusion, we can take the set-theoretic union of these two domains of
asymptotic stability and use this union as a better approximation for the

actual domain of asymptotic stability of the system.

Example 27, Bﬂ A Nonsymmetrical Oscillator

The system's equation is
‘x.+ai+bx+x2=0,a>0,b>0,
or in state variable notation,
X] = X
. 2
Xpg == bxy; - x1 - axp,
The nearby system is defined by
;{1 = XZ + axl + f4 (Xl’ Xz )
. 2
xpg = - bx] - xi - ax2 + f5 (x1 ,%x2),

[E:f_& + Bf_zj
where | 3x1 Jx2 | =0

As in the previous examples

we choose f; and f5 to satisfy certain conditions; thus, we have

2
f4(x1,x2) =0, f5(x1,x2) =-a Xi,
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where
2
X* = ax; (b +x1),.
Thus, the integral of the nearby system and the Liapunov function of the

original system is

3 2
2 2 1 x 2
b + a” X Xzl
h (xl’xzu_) =[ 2 X1 + 3 + axjxg + 2

where

. 2
h =-ax; (b+x;) and x; > - b.

The boundary of the domain of asymptotic stability is given by

2 2 2 2 2 b
(ax; +x9) + x; (b +/3x1) =b (a +3),

X} =-Db, OéxzéZab.
It is noted that if a = 0 we have a domain of stability and not asymptotic

stability.

Example 28, [gﬂ A Nonlinear Compensator

‘The state space description of this system is
X1 = X2
. 3
X9 = - x1 +x +dxg - sgn (x1 + x9)

where d > 0. The nearby system is given as

X] = xp -dx; +sgn (x1 + x2) + f4(x1,x2),

3
X =X +x 1 -sgn (xl + x2) + f5(x1’ X5) .

From the cross product term we choose

]

fa(xl’xz) X9,

]

2 3
f5(xl,x2) - (@ +1) X1 + x1,
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which gives

2 2
X =1 -d(x; +x3) + (1 -4d) (x +x) sgn (x3 +x) +

4 3
+dx; - x1 sgn (x3 + xp).
The integral of the nearby system and the Liapunov function for the original

system is

2 4 2
2+d 2 _dxixy + (x1 + x2) sgn (x1 +x2) +x ,.

x —xL
h(xl’xz) i 2 1 2
For d = 1, the domain of asymptotic stability can be shown to be (as given

by this analysis)

(_1_.) 2 2 (1 2 2
2 J(x1 +x2) +02 ) (X1 - X2) + (x+ =) sgn (x) +x9) +

2 2
+ X1oa-x) < 1oL
2
Example 29, Bé] Lewis Servomechanism

This system is a positioning servomechanism with a nonlinear feedback
and is described by
X + [Za-b[x[_] x + x = 0,

or in state space

X1 < le‘é ,
Xp =o [?a - b,xl’.] X9 = X] .
The nearby system is given by

X

1
[0}

.

X9 = = ['38 -b ,Xll :l Xo- x; + fs(xl’xz).
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Thus, the cross product is

2
[2ax1 - E)zil sgn (xl):l [ 2a - b lxll_] xp +
bxl2

+ X1 [Zaxl - T sgn (xl)] +

X¥

+ [2& -b ‘Xll:] x2f4(x1’x2) -+ X1f4 (Xl,XZ) + X2f5 (XI,XZ),
which indicates that we can let

f, =0,

2
bxy
£ =-[:Zax1 - 2 sgn (xlﬂ[2a-b leﬂ ,
glving
% 2 bx1
X = xp 2a ~ 2 sgn (xl):] .
Therefore, the choice for the Liapunov function for the original system is
2 22
h(xl’xz) =x; + E‘Z + (2axy - b/2 sgn (x7) x :] ,
where

, x1
2a — [EE‘J sgn (x;) > 0.

From h(x,, X,) and the accompanying condition on X1, we define a domain of

asymptotic stability by the inequality
2

2 2 2
1 + 2 + (2axy; - b/2 sgn (x xJ 6a
x w + Qe - b2 e G u ] <[ o]

Example 30, |58 A Nonlinear Damped Pendulum

The equation of this pendulum is
X + (Esin x)X+ sinx = O,

where

[
—
]

X2,

—-sinxl - €x2 sinxl_

b
N
I
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The cross product becomes

2
X* =€sin x| +ézx2 sin X] €Os X3 + x2f5 (xl’xz) + [:sin Xy +éx2 cos xﬂ f4(x1,x2).

A reasonable choice for the unknown functions is

f4 = 0, f5 - € sin X] cos X,

gliving

]

2
x* € sin xp,
The corresponding first integral gives the following candidate for a

Liapunov function for the pendulum:

2 2
h(xl’xz) = ;_2 + €x, 8in x; - cos x; - éa cos 2x; +

2 A
2
+ 1 +6/4=%‘(x2+ € sin x7) + (1 - cos x7),
where ¢ > 0, The domain of asymptotic stability is given by

IX1,<TI')€>0,

2
+ €x9 8in %x; - cos x| - 62/4 cos 2x; < 1 —6/4.

lx
NN o

Example 31, Eiél_ Globally Stable Oscillator

The describing equations are

X1 = X2,
. 2 4 3
x9 =€(l -x1 + x1) xp —x71 .

The nearby system becomes

X3 xS
X] =Xp - €E(x3 - 1/3 + -1/5 ) + £ (x1 %),

. 2 4 3
XZ = e (1 - xl + xl ) xz - xl— + fs(xl’ sz ).
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From these systems the cross product term is

%* 2 2 4 2 4
X' =€"x1x(1 - X1/3 +x1/5)(1 -x] +x1) +
4 2 4
- ex3 (1- xy/3 + xl/s ) + xof5 (xl’xz) +

By inspection of x*, the X1X, - term is eliminated if
f4 (xl,xz) =0

2 2 4 2 4
fS(xl,XZ) = - €x(1 - xl;3 +xl/g YA - x g +x ).

Thus,

[y 2 Ve \2+ 3 B
s -5/ 7 % |

* . .
which implies that € < O for a positive semidefinite X. The Lidpunov

o _
= -

-

(<))

function is taken as

3 ~’+
h(xl,xz) = E{l - (x - xl3 + x1/5) _; 2 0.

Therefore, our system is globally asymptotically stable if &€ <0.

Example 32 5 Liquid Motion in a Surge-Tank

The differential equation describing the motion of the water level of
a simple surge-tank is highly nonlinear. The results of the authors', ESQ
analysis show the existence of three positions of equilibrium, and possibly
the presence of a limit cycle. In the following we give the nondimensional

quantities involved in the analysis:

WA
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“T"= nondimensional time,
X = nondimensional water surface level in the tank,
@ = nondimensional head-loss in the system,
o = nondimensiondveloci ty.

The equation of motion is given as

2 2
. 2 .2 . 22X 1 + 2Xx |+
+ X x + __(_3_ X G @
38 K (1+0)2
+ |x - + @ = 0.
er 4]
(1+x)
In state variable notation we have
121 = X2
. 2 2
Bo=- | m -8+ 8 |- Xx o+
2
(1+x7) @
2 2
-8 =x 282 1 4+ 2&Xxy)| |
o (1+x1) 2 <] 8
This system describes the motion of the nondimensional water level in the
surge-tank, x, and its corresponding velocity, x = dx .
dt

From the above equations it follows that the system has three equilibrium

solutions, or singular points. In the x1x) - space the coordinates of the

singular points are

; i} 8 #
_P.l"(0> 0), Pz = (-1 + z E1+(1+4/@) J » 0)

%
B, (-1 +@/2[1-(1+4/€) _],0) .
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The linearized system about point P; is

X1 = X2 2
. [3_9_& _ IJ x2’
Xg == XxX1 - @/O( é

which indicates the following:

2
(1) 2« > | » P; is a stable node or focus,
é
2
(2) 2 = 1 , P is a stable center,
é
2
3) 22( <1 » P; is unstable.

resulting systems produce the following:
(4) for O <é< 1/2 » Py is a saddle point,

(5) for 0 < g < 1/2 » P3 is either an unstable

node or focus.

The equilibrium position P; , the origin, is the point of interest since it

represents the steady state operation of the surge-tank. The saddle point,

Pz’, represents an unstable equilibrium above which the water level rises

and below which the level falls. Lastly, P3 is only of mathematical interest.

Thus, the study of stability is concerned with point Pj.

The authors used the integral technique in obtaining the following
Liapunov functions; this technique is written up in the text of this section

and occurs in E?, Sa. One Liapunov function which was derived is

2 2

X1
2
Vi =_’£g exp| 2 =< + X] - + é exp | _2X le dxj
2 [ e %ﬂ d/1[j é? T+ xlsz éa v
o
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‘where
. @ 2 2 2 2
Vi = — x 2 2 1 + 2= x1 | exp 2°<x1
o (1 +x1)° e é G
Thus V; is positive definite and V:1 is negative semidefinite for
-1<£ é <*¥1.
2
2=

Therefore, a domain of stability is determined by the closed bounding

curve given below:

L+ 822
2
Vi = f X] - @+ 8 exp | 29X x1 dxy,
T+ X1 YA @
)
2
We observe that if @(2 o< , then a domain of asymptotic

stability exists. As B-—» 2 c% , the implication is that a limit

cycle is formed,and)which eventually shrinks to the origin as @ =2 oz( .
A second Liapunov function)which will give a larger domain of

asymptotic stability) is

2 2 AL e
v, = _>_(_2_ 1 - %2) exp 2 xj + |:x -6+ ‘Iexp
23 ( 3 ) ) [ 8 ! f ! @ (1 + x)Z
o

2
2 K X1 :}
dxp
e

where

. 2 2 2 2
Vo =-x2 -_;_9é<_x2 + é (1-35%)_<2o< _1 +2xX xl) +

< (l+x1) e E—
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Example 33, feﬁl Barbasin's Equatien

Barbasin's equation [62] is given as

x+a1'x’+;£(>i) + £ (x = 0,

where the zeros of 7‘ and £ are only at x =0 and x = 0, respectively,
and a, is a constant. The conditions derived by Barbasin for global
asymptotic stability are herein derived by Walker's and Clark's method.

In state variable notation Barbasin's equation becomes

X1 T X2 »

r4

222 = X3_l,

[
Xy -ax; - %(xz) - f(xl).
We now consider a 'mearby' system which possesses a first integral given

by the function H(xy, X, x3). Assuming df(x;) is continuous, the
) dx
1

differential equations defining H are

9H =ax, + (x,) + £(x7)
i, Ue }52 1

g = aH dxzw = xp df(%X1)
'3"1 |

%2 dx]

?;H__ = x3 + _?; f DH dxo = x3 + ajxj.
’BX3 ax3 ’)XZ

Next, we consider as a candidate for the Liapunov function an integral of
yet another 'nearby" system. This new system is such that the first integral

V satisfies the following:

3.1.=Eﬂ+f1 xp df(xD) + f)
?Xl ?X]_ dxl

[}

AW_ = 9H + f ajxs +;5(x2) + E(x)) + £

1

"sz sz
%V_=3.1_1+f3 = x3 + ajxp + f3
%3 “ax3
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where fj; are determined such that V is negative semidefinite and

afi = Aft
?xa axi

The time derivative, V, of V, referred to the original system of Barbasin,

is given as

<l
1]
g
= |
%
1
[
']
,.—l
»
N
»
W

2 g2 _ 450u) |
+ X3f2 - X 5 [&1 X2 X1 —'f3 ajxz + ?{(xz) + £(x71)]:

Cancellation of the indefinite terms in V is:fulfilled if

f1 = aif(xy)
2

fp = a1 x,

f3 = 0.

The resulting V becomes

. 2
V==-x, [al égxzz . df(xl)
X9 dxq

b

which must be negative semidefinite. By line integration we obtain V:

IV dx; + | AV dxy, + | IV  dx
V=f$1"1 fi;iz 2 3X3 3

X1
2 2 2
= a; £(x1) dx; + xof(x7) + a; x3 + x3 + ajxoxy +
2 2
o
*2
+ 75 (x2) dxp
o
xl X
2 1 2
= a] f(x1) dx1 + x2 f(x1) + %(xz) dx2 + 2 (a1x2 + x3).
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For global asymptotic stability, V is a proper Liapunov function if

D) afp) _dEGx) o s # O,
X9 dxl

(2) 81 > 0:
(3) =x£(x;) > 0, xHé 0,

(4) V—> oo for //_}ﬁ//-—boo:

() 12 (a, x, + x°+ / ;‘(xz) dx, + a; £(x1) dx; > xpf(x7).

Example 34, |6a A Third Order Example

The defining equation for this example is

%+ X + (x+e) = 0

or in state variable notation,

X] = X3,

122 = X3 ’

. m

X3 = - bxy - (x3 +cxp) .
The H-function is defined by

Ay 2

Qx, = bxg + (x; + cxy)

where

E_H_ QH dxp = 1 (xl + CXZ)m ’
axl 'axl c

A = x, + 9 QH dx)| = %2 + bx, .
T 3 ax3fax2 2 3 2
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For the second '"'nearby' system the integral V is given by

L]

m
Ay = Au + £, = 1 (g + exp) + £

“axy axg c
m
3__‘_’__ = Q_}_I + f2 = bX3 + (X1+CX2) + fz,
QXZ ng
W = JH 4+ f3 = x3 + bxp + f3.
¥z dx3

Considering V as a candidate for a Liapunov function implies that V is given
as follows:

. o m 2

m.
+ X3f2 - f3 EbX3 + (Xl -+ CX2) J .

First, we see that the first term on the right should be eliminated; thus,

choose
£y = Eb + l/c:l x3 + g2 |
£5 = Eb v U] % + g3,

P2 3 Ay = 9fs,
where JX3 Q%2 must be satisfied if Jx3 2%2
Therefore,'ﬁ becomes

V=~ Eb - 1/C X 2 - b/C X2X3 + X3g2 + Xzfl +

3

m
- 83 EbX3 + (xl +cx2) _].
V will be negative semidefinite if we retain only the first term on the

right; thus, let

f1 =0, g3 = 0,8 =[c¢
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The final form for ‘.I is
° B 2 _
V=- x (b - 1/¢)
3
which is negative semidefinite if b > 1/c.

By line integration of the gradient of V,

(e B

m 1 m
Wy = [xl +cx7] » ble x, +(c)x3 + [xl + csz » /e xy+ x4

>

we have

m+1 2 2
V= 1 x) + cxy + 1 [x3 + x2| + _1_ [bc - 1:] Xy o
c(mt+l) 2 2 2c2

The sufficient conditions for this third order nonlinear system to be

globally asymptotically stable are
(1) be > 1,
(2) ¢ >0,

(3) m is a positive odd integer.

Example 35, BO] Nonlinear Feedback System

This particular nonlinear feedback system is defined by

X] = X2
X2 = X3

. 2 3
X3 = - 3X% X3 = 2xp - 6x1x2 - X1 -

The H - function is defined by
= 2 2 3
DH = 3x1 Xq + 2x2 + 6x1 Xg + X1
'sz
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where
é_l_i[- = ’a f _?_H dXZJ = 6X1XZX3 + 2X2 + 3X1 X2
axy dx1 dxy
Y = 2 [ [2 ;
aH = x3 + g 2gH dxy = x3 + 3x) x3.
HXB 2X3 QXZ

The corresponding V - function is given by

'g 2 3
___y_. = 3Xl XZ + 2X2 -+ 6X1x2X3 + fl
axi
p) 2 2 3
2V = 3x1 x3 +2xp +bxyxg + xy + fa
axy

2
9_1=X3+3X1XB+f3.
9"3

Considering the original system the time derivative of V is
V= @) x = [6x x2 - 9x4 x]x +
T = 172 1 7273

3 3 2 5 . 2 2

2 3 3
+ xp f1 + x3fy - f3 [3x1 X3 + 2xp + 6x1xy9 + x1 |,

Choose the f; in the following way:

3 3 2 5
f1 = - 2x92 + 18x] x2 4+ 3x1 ,

2
fgp = - 6x] x9 + 9X14 X9
f3 =0 N
which gives a negative semidefinite \.7,
2 2

V==-3x x9.
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The line integral of VV gives

1 2 P 132 1
V= 2 X3 + 3% )% +(x, + 2 x{] + 4 x .
Looking at V and {l, we see that all of the conditions of LaSalle's theorem

are satisfied in the entire space, thus concluding that the system is

globally asymptotically stable.

Example 36, Ed A Nonsymmetrical System

Consider the third order system defined by

o0

x+b;{'+;:+x+ax2=0,

or in state space notation,

X1 = X2

td
N
"

X3

2
= - bxj - X9 - X] - axjy ,

»
w
I

For the corresponding nearby system the B - function is given as

2
?H = bxy + xp + x; + ax; ,
?xZ
where
gH = xp + 2ax1 X
?X]_

gH = X3 + bx2
“dx3

Thus, the gradient of the V - function becomes

gv = x + 2axx + f
—v 2 192 1,
axy

2
Qv =bxg + x+ x + ax; + f2,
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For the original system, the time derivative of V is
o 2
V= - E)-I-Zaxl:l XZ - b2X2X3 - be E{l + aXl2]+

+ x2f1 + x3f2 - f3E)x3 + %+ xy + axlz_:] .
Choose the f; such that the second and third terms, on the right, in

\‘7 cancel; that is,

2
b(x; + axy) ,

fl =
2
f =b x2 ,
f3 =0,
and
° 2
V=-x b -1 - 2ax;
\.l is negative semidefinite if 2ax] < b -1 . Integration

of the gradient of V, YV, gives

2 2 2
X, + bx + 1/2 | %y + x; + ax +
3 2 1 1

2 2 2
xl[b-l-a x; + 2a (b/3 -1) xl].

N |

N[

+
Locally, the origin is asymptotically stable if
(1) 23}(1 < b -1 3

(2) 0 < b-1.

The region of asymptotic stability about x = O as given by the above Liapunov

function is

3
(b-1)"  (b+3) b |.
0 < v < min [: 96at ) 632]
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Example 37, [éa, Linear Switching System

The defining equation of this system contains a function which is
plecewise linear,vnamely:

x + by X + bzi + b3sgn (x+cx) = 0,

where the bi's and ¢ are constants and

L, vy >0

0, vy = 0 .
sgn(y) =

-1, ¥y € 0

In state variable notation we have

X] = x2
X2 = x3
§3 = = b1x3 - byx, - b3 sgn (xl + cxz)o

The H and V functions are defined as in the previous examples, the gradient

of V being given as

Ei! = EQ sgn (x; + cxp) + £

Dxl Cc

:iz. = bIX3 + bzxz + b3 sgn(xl + sz) + f2
‘dxy

9V = x5 + byxy + fg,
9%3
Thus, the time derivative of V is

2 2
V=- by (b; - 1/c) X9 sgn(x] + cxp) - by X9x3 - byby x5 +

+ X9 fl + X3f2 - f3 [}1X3 +‘b2X2 + b3 sgn(xl + CX2 i] .
We choose the fj such that the first two terms in V disappear; thus, we have
£f1 = 0

f2 = - [}1 - 1/%] X3 + b1X2,
C
f3 = - [51 - 1/?] X2,
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Qﬁ__ = gf' . Therefore,
where ’ij §xi

. 2 b2 x
V=-1|b1 -1/c x3 —|e¢

and integration of (§V) gives

b3 bl
\' c X7 + cxp| sgn (x7 +cx3) + 2¢ [x

b2 2 cbl - 1
+ 2 2 + 2cb; X3 .

The system is globally asymptotically stable for
(1) bl, b2, b3 > 0,
2 ¢ > 0,

(3) by c >1.

Example 38, [B(ﬂ Fourth Order System

Consider the system defined by

oo 0

oce e L] 3
x + 4x + 5x 4+ 2x + cx = 0,

or in state variable notation

x1 = x2 ,
Y o= x3
X3 = x4 ,
;{4 = = 4x; = 5x3 - 2x9 -cx13

The H - function is defined by

AR =4x, + 5x, + 2x, + cxo
QX3

JH =_?._[f ?;.l_l.dX£| = 3cx12 X3 ,
2%  ax) ax3
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da_ [ du dx3] = 2x3

Qxy  Ix a3

ain X4 + —2__ [ / h dXBJ = X4 + 4X3 .
ELA ax, ‘a%3

The gradient of the V - function is given by

o)
=~
"

o)
=
i

'g g 2 g

aVv = dH + f1 = 3cx; x3 "+ fq,

‘9% a*1

El=2§+fz=2x3+f2

dxa g%

gV=gH+f = 4x + 5x, + 2x +cx3+f
— gH 3 4 3 2 1 3,
dx3  Jx3

AV = dH +f, = x4 + bx3 + £

LA 97

The time derivative of V is
o - 3 2
V=- 16x3x4 - 8x2x3 - 4cx3x1 + 3cx1 XX +
2
- 18X3 + Xzfl +X3f2 + X4f3 +

V 3
- f4 [42{4 + 5X3 + 2X2 + cXx IJ.

By choosing the f; as given below, the first three terms in V are cancelled:

2 3 *
120}{1 X2 + bCXl + fl ’

rh
=
!

) *
£, = 8xy, + hexp + bx, + Sbx, + 4bxg + £, ,

*%*
f3= 16x3 -bx3 + 4bx2 +f3 ,

*
f4= bx2+ f4,
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%

where b is a parameter to be determined and fj are new undetermined functions

where must satisfy Dfi* = —gfj* . Thus, \.l becomes
A%; axi

<
]

2 2 2 2
3cx; X9xg - (18 - 4b) x5 + 12 cx) x, +

2 * * *
2bx2 + x2f1 +x3f2 + x4f3 +

* 3
- £4 |:4X4 + 5x3 + 2xp + cxlj.

This new expression for V is further simplified if

* * * *
f1 = f3 = f4, =0, £ = - b/2 xg,

A convenient choice for b is b (192/43); then we have

2 2
. 32 = cx x. + 1/8 x +
V=-12 [43 1:'[ 2 E]

.3_ CX12 X32
16

3

2 . 32
‘4‘43c

which is negative semidefinite for x; . The corresponding V is

3 (132) 4
V= cx; xq *+ l+cx1 %, +\ 4 Xy + 2 (1 + 2b) Y
1 2
+ 4 (16 + 9b) xp + b xpx, + 4xy x4 +
L 2 2
+ 2 (21 - b) x5 .+ 1/2 x,

A conservative estimate of the domain of asymptotic stability about x = 0

for this Liapunov function is given by Vg =3/10 ¢ > V = 0 ,

where C > 0O and b = 192 .
43
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LIAPUNOV'S DIRECT METHOD AND ROUTH'S CANONICAL FORM
SUMMARY
In this section the equivalence between Liapunov's Direct Method and the Routh-
Hurwitz Criterion for linear systems is established. For a linear system X = A x,
a transformation matrix Q is developed which transforms the system matrix A into a

special matrix R calléd a Routh Canonical Form. That is, by letting y = Q x and
substituting into the system equation, we get y = [g é,éli] y , where R=QA gnl.
The elements of R are closely related to the elements of the first column of Routh's
arrays. For linear systems the conditions for stability obtained from the R matrix
by Liapunov's Direct Method are the same as the Routh-Hurwitz Criterion.

This treatment is then extended to nonlinear systems. As a result of the
application of the transformation, y = Q X, to nonlinear systems, the linear terms
are essentially removed from further consideration and only the nonlinear terms

remain. This method is discussed in detail and a compendium of nonlinear differential

equations analyzed by this method is presentéd,

INTRODUCTION

In reference [1]*, the Liapunov's Direct Method is shown to yield necessary and
sufficient conditions for the stability of solutions of linear, time-invariant
differential equations. These conditions must be equivalent to the Routh-Hurwitz
conditions, for these are also necessary and sufficient. Several papers have recently
dealt with this equivglence. In England, Parks[2,3] gave a direct link between the
two methods by proving the Routh-Hurwitz Criterion using Liapunov's Direct Method.

In this country, Reiss and Geiss [4] have given a more straight-forward proof than
that of Parks. The equivalence between the two methods of analyzing linear systems

presented in this section will follow the work of Puri and Weygandt [5].‘ The reason

* refer to the references at the end of this section.
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for following their work is that it can be extended to the stability analysis of
nonlinear systems. | |

The material presented in this section is based on the discussion and examples
found in references [5,6,7,8] .  The Routh's Canonical Formvis applicable to the
study of linear systems and a certain class of nonlinear systems. The basic technique
is considered first, the discussion being based on references [5,8] . Then the ex;en-
sions and modifications, as given in references [b,f]‘,iare outlined.‘ The final
part of this section is a compendium of examples which comes from references
[5.6.7] -

In passing, we make note of other applications of the Routh's Canonical Form.
In reference [9] , Puri and Weygardt calculate quadratic moments of high order linear
systems via Routh canonical transformations and Liapunov functions. In reference
[1Q], Puri and Drake analyze the stability of nonlinear, nonautonomous difference
equations by using Routh's Canonical Form to generate Liapunov functiomns.

BASIC SYSTEM IN JORDAN CANONICAL FORM

The system being analysed is described by a differential equation of the form

(n) (n-1) (1) (1)
X +a x +. .. +a X +a x+F=0,
[ - n-1 n

(n) (n) n (n-1)  (n-2)

where x = x (t.)=d x/dt and F=F (x , X y eee 5 X3t)

=}

is a known nonlinear function of x and its derivatives. The values al, cee s an

are real constants. When F is identically zero, we have a linear autonomous system.

System (1) may always be written in the state variable or the Jordan Canonical

Form:

i(. =Ax-DbE, (2)
where

X1 X1 =X

X2 X2 =X (1)

. 3)
x= . . ‘
. . (n"l)
Xy ¥ =X ’




0
0
b= . , (4
0
1
and
0 1 0 « o 0 0
0 0 1 . e 0 0
é = . . L[] * (6)
.0 0 0 e 0 1
-a |-a | -a -a | -a
n| n-l n-2 2 1

and where F is a scalar function.

Linear Autonomous System

Consider the linear, autonomous system corresponding to equation (2), namely;

x= Ax )
To analyze the stability of this system, we introduce the transformation

y=Qzx, (8)
where Q is a real, nonsingular, constant matrix. Substituting equation (8)

into equation (7) gives

. -1 9
¥y=QAQ y=sRy.
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where R is chosen as a real matrix expressed in the following form:

-ry 1/1’.‘2 0 . . . 0 0
+2 0 J3 e o 0 0

0 -r3 0 . . . 0 0

(10)

=
I

0 0 0 o |/
0 0 o | . . . |=/@m|o

The elements of R are real quantities related to the Hurwitz determinants of

equation (7), as was shown in reference [3] . Because of the importance of this
report being used for instructional purposes, the above relationships are
repeated in the following paragraphs.

Elements of R vs. Elements of A

The matrix A in equation (6) for orders, 1,2,3, ... can be denoted by

4 = -ap

A, = |0 1
'3.2 -al 3

Ay = |0 1 0
0 0 1 >
723 By !

The characteristic polynomial for the ith order matrix is denoted by
A A,i(A)
In expanded form, we have
An, 0 a + A,
Bapo= ap+rs + )2

S T L

|/\L -Ai|, = 1,2,3, .us

]




n-1 n
Z& ) = a 4+a )\ +... + a‘} + )

The recursion relationships for the characteristic equations are

A » = 1,

A, (11)
M = a + A ) . i=1, ..., n

A,i A,i-1

Similarly, matrix R in equation (10) can be written, for orders 1,2,3,...,

as?

The characteristic polynomials corresponding to R are

A a) =

R,{

N - Ry

The recursion relationships for these characteristic equations are

AW

ry +>\,

ot oAt A2, (12)

A A D +r A ), i=3,4,...0.
R,1 R,i-1 i R,1-2

> >
SIS
] ]



Since Aj and R; are similar matrices, we have

A ™ =A & ,
R,1i A,i (13)

i = 1’ ;-i.o.g n. .
In equation (13), we equate coefficients of equal powers of )\ to obtain the
relationships between the elements of R; and A;.

As an example, consider i = 6. The results from equation (13) are

al = rl

ag rp + r3 + 14+ rg5+ rg
ag =1 ( ry+ r, + rg+ 1 )
a, = Turg + I3rg + 1r3ryg + 1Y) (r4 + Isg + rg )

ag = rir3 (r5 +r6) + rir,re

ag = T2r4T6 .

Solving these equations for r; in terms of a; gives:
rp =D 1= a
vy =l8y/A; = by = ay = a3 /a
ra = Aq/R88,= by/ay = a/a - b/b
3 =83/48= by/ay = ala - b/b,
ry = 4184/h383= b 3/b) - by /b3
rs = AyAs/B3 84= b3 /D - él6"3/ (bgby = byby)
te = A3d6/84 45" 2g/Tor,

whereAi are the Hurwitz subdeterminants and
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by = ap - a3z /a
bp = a4 - as /aj
by = a3 - a; by /by
b, = a5 - aj; ag /b
In summary, we have the following results for the n‘t_h' order system:
rl = A 1 = al '
r, AZ/A1=a2- ay; /a;
ry = A3/A1A2= ay /a; - (a, - ag/a; ) / (ag - az/ay ) ' (14)

e e D e YA B D G G M Y G D R WP O W RS WP e R R G e e o . e e e S R G e P S SR e S S P G T S AR TR S R M e W AP R R R Gm SR SR e R e R R R W W e e

Iy =Ai-3Ai/Ai-2Ai-1 i=4,5, ..., n

Liapunov Function for the Linear System

As a candidate for a Liapunov function, choose:

n
¥y = Z [yl P x, (15)
i=1
where, by equation (8),
P =Qr Q. (16)
The time derivative of V is given as
=iTl+XTi=ZT[ET+B] Y. 17)

Combining equations (10) and (17) gives:

-

=-2 1 y% (18)

3

which is negative semi-definite provided that rj > 0. This is the first

Routh~Hurwitz stability condition. The other Routh-Hurwitz conditions are

determined from the requirement that Q is a real matrix.
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th
The following is an algorithm for finding the elements of Q for an n  order

system. This algorithm is derived from the equation

gA:RQ (19)

th
Let the rows of Q be designated 0,1,2,...,n=1. The elements in the i TOW

of Q are the coefficients of A in the expressions forﬁﬁl multiplied by

1/2

n
( Trz ) r ) except when i = n-1, then the multiplier is unity.
j=2+ 3

As an example, consider n=4; the results are:

: il
(r2r3r4 ) 0 0 0 (r2r3r4 ) 0 0 0 1 0 0
| % %
Q= rl(r3r4) (r3r4) 0 0 |- 0 {r3r4 ) 0 0 ry 1 0
3 3| & 7
ry(r, ) rl(ra)Kr4 )10 0 0 r, 0 ry ry 1
r] r3 rot+ r;l r] 1 0 0 0 1 r1rj3 r2+ rj3 r1

Since the Q for any order system can be written in this form and since Q is a
real matrix, then we require that

r; >0, 1 =1,2,...,n. (20)
The inequalities in (20) are exactly the Routh-Hurwitz conditions (see
equaﬁion (14) ). Therefore the relation between Liapunov's Direct Method and
the Routh-Hurwitz criterion for linear, autonomous systems has been
demonstrated through the use of Routh's Canonical Form.

Nonlinear, Autonomous Systems

For this case we consider equation (2):

1B
1
1>
I
[}
o
N

(2)
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where F is an autondmous function. The reasoning behind the following procedure
can be best expressed by a quote from reference [5] » "since with F identically
zero the transformation y = Q x resulted in both necessary and sufficient condi-
tions for asympototic stability, it is reasonable to expect that the same trans-
formation might be useful in the nonlinear case'. Thus, our candidate for a
Liapunov function is
Vi=¥p Y¥=%2 P %,

where P = Qp Q and Q is the matrix obtained for the corresponding linear system.

i Taking the time derivative of V, gives

| Vi=3p ¥y +yw -

Premultiplying equation (2) by Q gives

but we see that

thus

Now substituting (26) into (22) gives

<
f—
"

yr [R +Rr] y-[br g +ygb] F

2
-2ry y1 - 2y,F.

(21)

(22)

(23)

(24)

(25)

(26)

(27)



- 10 - |
The variables yj and y, can be expressed in terms of xj,s..,X; by using
equation (8) and the Q matrix. Depending upon the nature of the nonlinearity F,

V, may or may not be a Liapunov function. If V; is not a Liapunov function, we

inspect equation (27) and find a scalar function Vp which is at least positive
semidefinite and such that (Vl + 62 ) is negative semidefinite. Thus, our Liapunov

function is

t (28)

vV = V]_ +f ‘.lzdt.

o
The requirement which %2 fulfills is that it cancels that part of the right hand
side of (27) which is not negative semidefinite.

In passing, we should note that for the nonlinear case Q need not always be
nonsingular. This will occur if the system matrix A has some pure imaginary
characteristic values. The nonlinearities in the system then may produce a stable

system, while the corresponding linear system is unstable.
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WORK OF HALEY AND HARRIS

INTRODUCTION

The central theme of this work is the investigation of the time derivative
of the V-function for the nonlinear system given in equation (2). By combining
equations (8), (25) and (27), 6 becomes
. (29)
Pexlarad- e
where P = Qp Q. Harris discusses the various forms of the linear part of V in
reference [6] , namely ET [g. A + éT‘g].g. Haley's thesis, reference [7] , deals
with the constraints on Q in the equation Q A = R Q such that the nonlinear part
of 6, 2xp P b F, is negative and semidefinite. Haley also considers complex trans-
formations defined by the matrix Q. Harris briefly discusses a Hurwitz Canonical
Form applied to linear systems; but he finds that it comtributes no appreciable
additional stability information beyond that given by the Routh's Canonical Form.

HARRIS 'S WORK

In reference [6] , Harris considers the various R and Q matrices which can be

t n-1
developed for linear systems. For an n_. . order system there exists 2 independent

Q matrices and n! different R matrices. These various forms for R and Q do not all
contribute new and significant information about the system being considered. For
the third order case, Harris lists the R and Q matrices of Puri and Parks. In
addition, Harris finds two other third order Q matrices by integrating or
differentiating certain elements of the corresponding differential equation and

then multiplying the entire equation by this generated term. The resulting Q's
produced by this method will be given in this section; but the application of the

same technique to the direct generation of Liapunov functions will be discussed
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in the Integration by Parts section of this report.

For a given Q matrix, Harris generated new R matrices by interchanging the rows
in the Q matrix and then solving the equation Q A = R Q for R. The reason for

generating the various R matrices is to obtain different forms for the linear

part of ﬁ, namely:

yp By + B)x=2rlyf, (30)
where i = 1,2,..., or n. As an example, listed below are the third order Q's

and R's obtained by Puri and Harris:

PURI & WEYGANDT

Vir3 | O 0 -1, Vo 0
Q =|rirs | Ve | O R=[%5 | o |[y&| - G
2 rp |l 0 Ay | O
D e = T
HARRTS
0 Vi | O -ty |2 | O
' — , (32)
@ = 0 rp |1 R=|4r | o | «f3
0 o= - Ty -
HARRTS
0 o |z R
Q =1 a3 az |0 R =[xz 0 [r3]| > (33)
0 | rpMry Wrg 0 Ay | 0
W ivear™ - r1’“?.":3, '
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Harris noted that if one requires the linear part of V to be negative definite
and not just negative semidefinite, then the following procedure can be followed.
th
Let ry, rp,..., T, be the n elements in the n~  order R matrix. Let Py = Q_iT_i_

be the matrix which satisfies

and

Vi = - r1r2 ...rn,lxi
where i = 1,2,...,n, and where V; is a Liapunov function. Now form a new Liapunov
function by letting

2V =2 (Vl-l-Vz +...+Vn),

where V = - (rirgeeceeryq) xpx.
This V is a negative definite function for a linear system if[rir) c....Ipldo.
The third order V whose derivative is negative definite can be formed from the
Q and R matrices listed in the equations (31), (32), and (33).

HALEY'S WORK, 7

(2) Third Order - Real Transformation

We first consider the third order system where Q is a real matrix. The
A and R matrices are given as indicated below:
0 1 0 -r Vr, 0
A= 0 0 1 | and R = Vg 0 ER D)
L-a3 -a, -a; 0 -'\/-1; 0

From the equation QA = RQ we get 9 equations involving the 9 unknown elements,

Qij, of Q. Only 6 of these equations are independent and thus we have three degrees
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of freedom. For example, if Q3= Qg3 = 0 and Q37 = ryp , we get the 3rd order Q -
matrix of Puri and Weygandt. 1If Q,53 =0, Q3 =1, and Qg4 =W/;E;g— , we get the
Q-matrix of Parks.

Now consider the nonlinear part of V, equation (29), 2xp P b F. The only
important terms in Pb are the elements Py3 , P93 and P33. In other words, the

nonlinear part of % can be written as
2xp b F = 2F | Py3 + xpPp3 + x3 P33] - (33)

Haley considered the following six cases:

Case 1: P13 = 0, F is a function of xl, x2 and/or x3 ’
Case 2: P =P =0, F is a function of x and/or x
13 23 2 3,
Case 3: P =P = 0, F is a function of x_ and/or x
23 33 1 2,
i Case 431 P =P =0, F is a function of x_, x_and/or x
13 33 1 2 3,
Case 5: P33 = 0, F is a function of X, and/or x2 ’

Case 6: Py3 = o, F is a function of only x5.
The 6 independent equations from QA = RQ plus the above restrictions allow us
to find the Q matrices. Haley found for the above cases the following results:
Cases 2,3,4 & 5 give only trivial solutions; case 6 is a special case of case 1.
The results of case 1 are given in the following discussion.

The form of the nonlinear differential equation that can be analyzed is

X +a(x, % x) ¥+b(x,%x x) x + azx = 0, (36)

where the nonlinearities are greater than zero and

a(x, x, %} a; + a (%, x, ),

1

b(x, X, X) a, + b (x, X, X).
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For asymptotic stability, the constants aj, ap, and a3 must be positive, and

1 ' L 2 e
a>0 and b;O for all x,x,x, considered. The special cases where a;= o, a, = 0,

and/or az =0, will be considered in the examples at the end of this section.

The general form of F in equation (36) is

1 o as e o e .
F=a (x,x,%x) x+b (x, x, x) x (37)

The transformation matrix Q can be written as:

0 0 Ve,
Q = rir3 ro + 13 0 . (38)
0 1 Vi3l VT

In state variable notation, the final Liapunov function and its time

derivative are

2 2
V = ryxq + [rlr3x1 + (r2 + r3) xa +

2
+[;fg; Xy + I3 X 3] +

x, (t)
1
+ 2 (r2 + g ) b ( X1s Xg» x3) xzdx2 +
%3 (0)
x, (£) ‘
1
+ 2 f rir3 & (xl, X9, X3 ) xdeZ, ) (39)

Ve=- [2r1r2 -2 (1:2 + 13 ) a (xl, Xy x3)] X'3 —_— 2r1r3x 2b (xl,xz,xa).
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.'s and the a,'s are given by equation (14).

The relationships between the r; i

(B) Third Order Systems, Complex Q

The matrix Q in equation (8) is taken as complex, and thus the vector y

is also complex. The candidate for a Liapunov function is given by

%* * 1
V=y¥y=%2Ql=xPF x
where (*) indicates the complex conjugate. Haley studied the V - function in
(41) and its corresponding time derivative, but the conclusion of his studies
was that no significant new transformation, Q, can be found. This conclusion
was found to be true for 2nd order and 4th order systems, as well as for 3rd
order systems.

(c) Second Order System

For the second order system, the A and R matrices are given as

0 1 -rl \/—r_z-

-a, -a| dfg 0

Following the same analysis as for the third order case, the corresponding

Q matrix becomes

Vr, 0

The most general nonlinear differential equation considered is

X + a; x + a,x +F =0,
1

where a) and ap are positive constants and F = a (x,i) X +b (x,i) X. The

(41)

(42)

(43)

(44)



- 17 -
nonlinearities a1 and b1 are also positive. In state variable notation, the

final form of the Liapunov function and its derivative is

x (t)
1
(45)
2 2 1
V = rox 1"" X9 + 2 b (Xl, X2) dex 1>
x (0)
1
and
. 2 2 1
vV = ‘2r1X2 - 2x2 a (Xl, Xz). (46)
(d) Fourth Order System
For the fourth order system the A and R matrices are
0 1 0 0 Ty W/rz 0 0
a= | ° 0 ! Olanag- || O Fa L O 1w
0 0 0 1 o | -fr3 0 Fa
-a, -aj -a, -a; 0 0 -/EZ 0
As in the second and third order cases, the Q is found to be
r+r
0o -3 4| 0o |-u/g
"2
Q= T, 0 1: 0 (48)

0 -3 0 0
[t5r, 0 0 0

The form of the differential equation considered here is

x + a£§’+ a2§ + a3i +asx +F =0, (49)
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1 . v
where a;, ay, a3 and a, are positive constants and F = b (x, X, X, X ) X.
1 , .
The nonlinearity b~ is also positive. In state variable notation, the final

form of the Liapunov function and its derivative is

2
a3 + 1 2 + + +
X X (r4x1 x_ )

velr /R f 4 ’

. x2 (t)
2 2 a bl
+ r3xy + r3T,%0+ 2 3 Xodxy  + (50)
rir2
X9 0
x3(t)
1
+2 ..b_. x3dx3 s
2
X3(0)
.and
L] a 2
V = -2r1 3 X, -+ 1 x4 . (51)

HARRIS'S '"'HURWITZ CANONICAL FORM'

In reference [6] , Harris derived a Hurwitz Canonical Form to be used in
stability analysis. For second order cases the Routh and Hurwitz Canonical Forms
give equivalent Liapunov functions. This is not true for third and higher order
systems. According to Harris, the Liapunov functions given by this canonical form
are not as useful as those given by the Routh Canonical Form., Thus, we will only

briefly outline Harris's derivation of the Hurwitz Canonical Form.
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Rewrite equation (1) in the following way

(L (2) (n)
x "+ an-1 x + an-2 x + ... 4+ x +Fx, t) =0, (52)
a a a a
n n n n
or
(L 2 (n) 1
X +°(1x + o<2x + ... +o§1x +F x, t) = 0,

where o<r...,o(are constants and Fl (x, t) is the nonlinear part such that
n
Fl 0,t) =o.

Define the state variable x by

X4 = X s (53)
1

In matrix form (52) becomes

f§dt=é§-hF1 (54)
0 1 0 . .. 0 0 0
0 0 1 . 0 0 0
where A = . . . . . and b = . . (55)
0 0 .. 0 1 0
- - - - -
% %1 | %2 2 1 1
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Following the same procedure as in the derivation of the Routh Canonical Form,

a change of variable y is defined by
Yy =2x, (56)

where Q is a constant matrix. Substituting (56) into (54) gives

1
jz dt =Ry -QDbF (x, t) (57

=1
Q AQ . Now let the candidate for a Liapunov function be

Jaeo ¢ [rao, (58)

and the corresponding time derivation is

2t = ( f 340 ¥ + 3y € [ yae) (59)
1
(x,t).

where R

2V

yp @ +R) y-2yQDbF
Equation (59) indicates that we may use all the previous formulas of the Routh
Canonical Form technique to generate these new Liapunov functions. All that is
necessary is to replace the a's in the Q matrices by X's and replace the r's in
the R matrices by @ 's. The form of the conditions for stability remain the same
and the conditions for stability in linear systems are the same. The @ 's in the
new R matrices are related to the Hurwitz determinants. The major difficulty of

. /
this method is that the nonlinear term in V, y Q b fT)is not as simple as that

given by the Routh Canonical Form.
Conclusions

In this section we have discussed the Routh Canonical Form and its relation-
ship to the stability of a nonlinear system. First, the work of Puri and Weygandt
was discussed and their method for generating Liapunov functions was described.
The work of Haley and Harris resulted in the analysis of rather general second,
third, and fourth order nonlinear, autonomous differential equations. The method
can be extended to any order equation; but, as the order increases, the labor
becomes prohibitive due to the various R and Q matrices which are possible in this

analysis.
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COMPENDIUM OF EXAMPLES

Second Order Examples

Example 1, [5] & [6]

The system is described by

x + x +Kx =0, Kz constant.

Writing this equation in state variable form gives:

X, 0 1 X, 0 5
= - KX
l b
X, 0 -1 X, 1
where xj = x, xp = k.
Since rl = al= -1 and r2 = &2=0, then
\/T2 0 0 0
Q = = > det. 9, = 0.
ry 1 1 1
(We note that Q is singular in this example.)
The transformation y = Q x becomes
Yy 0 0 X1
Y2 1 1 X, X

The V1 -function defined by Yr ¥ is

Vi =¥px = (x+ x2)2

3

3
= -2K (Xl + X2) Xi= 'ZKX? -_ 2KX2X1

<o
pa—)
[
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3 .
2Kx2x1 to V1 in order that the sum is a semi-definite form. Therefore,

Add V
2

=
I

. X 4
V. + V_ =- 2Kx_,
1 2 1
and
2 t 3 2 4
Vo= (x; + %) +'2Kf x 1%, dt = (x] + %, )" + Kxy.
0 T

Thus, V is positive definite and V is negative semi-definite if K>0. Since
V- 00 as "5”.__. 00 and since no trajectory of the system makes V identically zero

except the trivial solution, the system is globally asymptotically stable.

Example 2, [7]

From the field of electronencepholography, we have

X+ (a+b x2 - cx6 + dxlo) x + x =0

where a, b, ¢ and d are positive constants. Using state variables, we have:

i1= X2 = kA

l
kz = ax2 -xl -f

f = (-2a + bx2 - ex® + dxlo) X

1 1 1 2

Haley's Q matrix takes the form

0 1 0 1|

Q = = ’
Ve, | 0 -1 0

where r, =a and r, = 1. Thus, V and V become

2 2
V=XTX=X1+X2
Voo [ApQrQ+ Q@ A]x- 2 Q0 Qbt

_ 2 2 2 6 10
= 2a X2 - 2x2 (-2a + bx1 cxl + dx1 ).
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V is positive definite and V is negative semi-definite when

2 10 6
b X, + dx1 > -2a + cx 1

When this inequality is satisfied the nonlinear differential equation is asymptotically

stable.

Example 3, [7]

Consider the equation:

.e . 2
X + ax +b f(x) =0,

where f(x) is defined by

f(x) x-f1 (x) ,

fl(x)

[
o
1
b
IN
]
IN
=

fl(x) = x=K, x >K

it

f1(x) x+K, x¢ —K.

Rewriting the differential equation gives

- . 2
X+ax+bx= rbz f1 (%),

and in state variables

The Q matrix becomes

0 1
Q = ;
-b 0

where r)= a, rp= bz, and b > 0. Thus,
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2 . .
Adding #/» = -2b" f; (x3) xp to Vi gives
. 2
V=it Vz = —2axj
Xl(t)
V = b%x% + x2— 2p? £, (x)  dx,.
x, (0)

It can be shown that if a>0 and -K<xy<K, then the system is asympotically stable.

The system will also be asymptotically stable whenever xj(t) and x7(0) satisfy

2 x, (t)
X1 0)

Example 4, [5]

This example was analyzed by Schultz and Gibson using the variable gradient
method.

The equation is

¥ + %x + £ (x) ¥ +4df(x) x %k +@x£f(x) =0.
d x

In state variable notation we have:

Xl = X, X2 = }.(,
)'(1 = X2 N
kz = -x, -F (x1 s x2),

F (xl) xz) = f(Xl) X2 + df(Xl) X1X2 + SX,f(xl)

dxl
0 1 0 1
_A- =
-ay -a; = 0 -1 ,
= - F (Xl, Xz).
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The Q matrix is

'\/‘rz 0 0 0
g = = s
ry 1 1 1

where r®a; = 1 and r, = a, = 0. (Note, this is another example where Q is

singular.) The V| function is

2
V= 3y = (g 4%y 07
where
V.= —2ry> -2y_F
1 V1 T2
= -2(x1 + X, ) f(xl) X, + df(xl) X %, + 8 X, f(xl)
dxl

Now let \.Izbe

62 = 2X1X) dx1f (x1 ) + @f(xl) .
dxl

Thus, Vl + ‘.12 becomes

. . . 2 .2
V = Vl + V2 = =2 @xl f(xl) - 2x2 dx] £(x7)
dxl
X1
and V = (xl + X )2 + 2 f dx£(x3) + @£(x ) x1dxy
0 dxy

Therefore, the system is globally asymptotically stable if:
1 dx_f£
L dx £ 0,
dx
1
2) @ £(x)) >0,
3) v # 0 on any nontrivial trajectory,

(4) V—oo0 if |_>_<_|| — o0.



Third Order Examples

Example 1, [5]

Consider the following system
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x4+ aX + bx + abx + F =()

where a and b are positive constants, and F is a nonlinearity which makes the

unstable linear system stable by its presence.

\/r1r3 0 0
o = | o5 | Vm | 0] =

2 1 1

r

]

where ry

al a

the Vl-function becomes

2 2
V1 = ¥y = b (axl + xz) + (ax2+ x3) ,

The Q matrix is

0 0 0
a/b /b 0
0 a 1

a;] = a, rp =ag-a3® b-ab= 0, and r3 = aj/a; = ab/a = b. Thus

where X|= X, Xg = i, and X3 = X. The time derivative of Vi is

. 2
V, = -2ay; -2Fy3 = -2(axy; + x3 ) F.
2mt1
Choose F = K X9 , where m is a nonnegative integer.
. 2(m+1) 2 (m+1)
V = -2aKxjp - 2Kx3 x2

This dictates the choice of Vz, namely

_ 2mt1
Vz = 2Kx3x2

Thus,

B . . 2(m+1)
\' V1 + V2 = =2ak Xy ,

and

<
|

2 2
= b(ax, +x, )° + (ax, + x, ) + _K
1 2 2 3 o

x2nﬂ2
2

Thus, ﬁl becomes
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The system is globally asymptotically stable ifwis. nonnegativeinteger, K¥0, a%0,
b¥0, and F = K xgm*l.
Example 2, 5

The following example comes from the Russian author, E. P. Popov:

oo .o K
x + 1 x + _1F@) =0,
T T
where
t
X = Kgx + Kgx - Ky F(x) dt,
0

and T, Kl’ K2, K3, K4 are constants. In state variable notation, we have

. K
Xq =-]1 X3~ Fl » F1 = _l F(O().

Since

I
o

a, = 1/T = r; > a8 =ag =0 and ry = r3 =

The Q matrix becomes
ra/r3 0 0 0 0 0
Q =|riVry Vr3 0 = |0 0 0

r2 1’.‘1 1 0] 1/T 1

The V; - function is given as

YooY =()%2_ + x3)2 :

F@E).

Vi

where .

vV, = = 2k X2 + x
1 5 ( T 3
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The time derivative of o is given by

« = + K - .
% ) 353 K4 FE

From the original differential equation and the above expression for < we can

finally obtain

K3 " KiK 2
— XX + 2 M%% .
+ KT 343 — ()

Substitute this expression into the equation for ¥] and then form V2; that is

Vo =2K]  F@)x+ 2 [ K3 - 1| X3%3.
KpT2 KOT

Hence, we have

.. . 2 2

v-‘v1+v2 - & (kli(%-l))(al'l‘ + %zgf_ F&O |

and <
2

V= |l x,+ X + 2K F() d x +
(T : 3) KT

-1

X3
Kot
# O
The conditions for asymptotic stability are:

(1) K1>0, K2>0, KR40,

(2) K3 .1 > 0,
(KzT )

3 1T >0,

(4) ]d
F () d=<>0.
(¢]
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Example 3, [6]

Harris's example is

. . 3
X + a, x + aéX + ag X =0,

where r, = a1 ,3r2 =.a, r3=0 and
F (x, t) = as X . The V; - function becomes

. 2 . “ 2
2Vy = ap X +(a1X+X) s

where
" .2 . - 3
Vi =—aaX — (agX + X) (a3 X ).
Define VZ as
o v3 v v3 F L . 2 §2
Vo = &,63 A o i 63 a A T .,.'.’.3 A X .
Thus, we have
- . 2 . 2

Vv = vy + v, = —ay (a2 - 3a3/a1 X) X ,
2 o eel2 4 3.
2V = a, X + (al X+ X) + ajaq /2 X + a3 X X,

2 . .12 .
~lay - a3 x| &% + a, X + X|7+38 x2 (ax +H2
2al 2a)

The conditions for asymptotic stability are

(1) a.>0, a>0, a_>o0,

i 2 3
(2) a3y %2,
34,

Example 4, [7]

The differential equation is

X + a X 4 b X + CX = 0.
Using state variables and writing b(i) x as b (i) x =bx +b x) x,

b being a constant, we get:
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Xl = X2 = X ’
kz = X3,
5{3 = = a X3 - bX2 - CXl - b'(Xz) X2.

Haley's Q matrix is

0 0 A, 0 0 -\/b-c/a
Q = |rr3 Ty + 13 0 =]c b 0
0 rlw/r3 w/r3 L0 aVc/a c/a
where r; =a , ry) = b - c/a and ry = c/a.

Thus, the V; - function becomes

2
Vi =Y ¥=(b-c/a) X5 + (CX1 + BX2) +

2
+[\/ac X, + c/a XB] s
where
. 7 2 |
Uy =-2a(b-cla)Xy-2'(X) Xy [oxp+ bxs ] -

Let Vo be defined by

Vo = 2bb'(X2) X2X3;

then
. . 2 2
V=Vy+Vy == 2 (ab-c) x 3 — 2cb' (x2) x2,
and
2 2 — 2
V=(b-c/a) X3+ (cx3 + bxp) + Vac Xy + '\/c/a #3| +
xz(t)
!
+ 2 b b (x2) X, dx,.
x2(0)
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This is our Liapunov function. Thus, for asymptotic stability we require
¢H) b'(x2) >0 , b > 0,
(2 a>0 , ¢>0,
(3) ab - ¢ > 0.

Example 5, [7]

The stability of the null solution of a system, characterized by the

following differential equatien, is investigated:

e . .o .
X + f(x,x)x+bx+cx=0
where f is written as
fGx,%x) = a + a' (x, x).

The differential equation in state variable form is

).(1 = X2,

X2 = X3,

. _ _ _ - _ '

X3 = ax, bx2 cx, - a (xl R x2) Xge

The transformation Q, Haley's form, is

0 0 - Vb - c/a

g = Cc b 0

0 a\c/a cl/a

where r) =a, r,=b - c/a and 13 = c/a.

The Vi - function becomes

2 2 2
vy = Y.y = (b-c/a)x3 +(cx1+bx2) + c/a (ax2+ x3) R

2
where \71 = =—2(ab-c) X ;- 2a'(X;,X,) X3 (cx, + bxy).
Thus, let Vo be
. _ .
V2 2 ca (xl’XZ)XZXS’
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Therefore, the resulting V and V are

]

. . 2
vV = Vi + Vy -2x3 [ab+ba' (xl,xz)—c]

-2 l:bf (Xl,XZ) - le X :23,

and

o 2 2 2
V = (b-c/a) x 3+ (cxl + bx2 )° + c/a (ax2 + x3) +
X2
+ 2¢ f a'(xl’ Xy ) x21x2.
o

The conditions which must be satisfied for asymptotic stability are:
(1) bf (xl’ X9) — ¢ >0 ,
(2) a»0, c¢>»0, ab-c>0,
3) 2

‘(/)' a' (xl, xz) x2J_x2 > 0.

Example 6, [7]

The differential equation is

X + A (%% x + B (x,x) x + cx =0.

In state variable notation,

k1 = X,
X, = X,
5{3=— ax3-bx2-cx1-f,
where
A (x; ;%)) = a + a' (% ,%x,) ,
B (x; ,x) = b + b' (x,,x),

f = ' + b' .
a (xl, x2) x3 (xl’ x2) x:2
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The Q matrix used in this example is the same as that used in the previous

example, where r. = a, r, = b - ¢/a and r, = c/a.

1 3

The Vq - function becomes

2 2
Vl =Y tz = (b - c/a) X3 + (CXl + bxz) +

+ c/a (ax2 + x3)2 s

where

. 2
vV, = - 2(ab-c) x 3 — 2 [a'(x1 x2) xq + b’ (x1 x2) xz] {cx2+ bx3].

The form of V7 is

\.72 2 [ca' (xl,xz) + b b' (x]_’ x?_)] X9X3.

Thus, ' and V are

2 2

e 8t N\ 2 kal ¢
= +V, = - £ (@av-¢j x,—
17 "2 \abmes =37 e ®a

|
(
|
i

2
- 2 ¢b! ,
c (xl, X9) X 2

and

<
]

2 2 . 2
(b - c/a) x3 + (ex; + bx, ) + c/a (ax2 +x3) +

X2
+ ' + bb' .
2]1 [ca (xl,XZ) (xl’xz)} xzclx2
)

The conditions for asymptotic stability are
(1) ab-c >0, b >0, ¢ >0, a > 0,

1 1
(2) a (x1 x2) > 0 and b (x1

’

> 0,
XZ)

b

(3) ca' (x1 xz) + bb' (x xz) > 0.

L,
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Fourth Order Example, 7

This example has been discussed by Cartwright but will be considered here

in the "light" of the Routh Canonical Form:

X+a1; + f(;t);+a3;(+a4.x=0,
where
fG) = ag+ b (.

In state variable notation we have

)-(1 = x2 ’
).(2 = X3 N
X3 = X 4

X4 = - 31X4 - az X3 -a3X2 - a4x]‘_ - f,

h
[

]
b (x2 ) Xq.
Since we have
al,
T, = [ a3/a1]’

[a3/a1 —a1a4/(a1a2— a3):, s

~
w
I

[a]
I

[a1a4/(a1a2 - a3)] >

then the Q matrix becomes

a3 al al
0 - a; \ajap - a3 0 |- Vagay - a3

& 2 \ 0 1 0
T F° 43
Q = 0 -1\ 23 - 8%, 0 0
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Thus, the Vi - function is

_ _ 2 2 2 2
2
= Ffé ai X9 4 3134 X1 + x3 +
a]  Vajaz- a3 v a1a2- a3 flaz- a3
123 - 218 |xy2 H_1% 23 %1% |xy?2
a; aya, - ag a; a1a2 - a3
L
where
. 2
V]. = = 23.1 33X2 -+ 31X4 — 2 bl (Xz) X3 (timeS)
ajap - ag ajag - asg
83Xy + a1xX,1
ajaz - ag

Therefore, we let ﬁz be given by

Vo =20b' (x,) x; [ 23T+ %1% .
132" a3

The final Liapunov function is

2
V=V + V2 == 2 a; asxp + aix4
a1a2 - a3 3
and
X2 X3
V=V + 2a3 (x2) xzixz + 4+ 2a] b' (x2) x3dx3.
a1dp-a3 a1a743
o [}




- 36 -
The conditions for asymptotic stability are:

(1) a;>0, a; a4 >0, (alaz - 33) > 0, a0,

(2) a3/a; — al az >0,

alaz - a3
X2
(3 f b' (x9) xp dxy >0,
o
X3

(@ f b' (x2) x3 dx3>0.

(o]
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INTEGRATION BY PARTS
SUMMARY
In this section we discuss the generation of Liapunov functions by a repeated
application of integration by parts. We discuss three variations of this procedure,
as given by Geiss and Reiss, Harris and Puri. The method of Geiss and Reiss begins
with a first approximation for V; for nth order systems, @1 = -xﬁ. By integration by

parts, V) is evaluated. During the application of the integration by parts, the

system equations play the role of constraints along the paths of integration. If
V1 is not a Liapunov function, a second approximation for V is considered, namely,

-

V2 = - (xn +-o<xn_1). The constant « is chosen in such a way that V2 is definite,
if this is possible. By integration by parts, V, is obtained. If Vy is not a

Liapunov function, then choose

. 2 2 2

Vg = - (xn +tXx gt X9 ).

V3 is obtained by integrating 03. The procedure continues until a Liapunov function
is given or the method fails. This method works best for low order systems.

In Harris' work, multipliers are formed by differentiating or integrating
certain terms in the given differential equation. These multipliers are then applied
to the original differential equation. The result from this operation is that cer-
tain terms in the resulting equation are perfect squares in the state variables, and
thus form V. Other terms are time derivatives of perfect squares, and still other
terms are reformulated by the integration by parts technique such that V can be
integrated to give a positive definite V - function. This method is applied to
second and third order systems.

Puri's method is basically a combination of Harris' method and the Geiss and
Reiss method, Puri's method is more systemetized and can probably be applied to
higher order systems with more ease than the other two methods. Puri's technique

involves both a multiplier and repeated integration by parts.



INTRODUCTION

We are concerned with the study of stability of the equilibrium solution

(the origin in state space) of a dynamic system defined by

. (1)
X = F (x,t) .

The technique considered here for generating Liapunov functions can be applied to
certain nonautonomous systems as well as to autonomous systems, look at examples 5
and 17 in this section.

First, we will discuss the repeated integration by parts technique of Geiss
and Reiss @42,31*. And then the method of Harris [}ﬂ, will be considered. This
discussion deals with the application of Harris' technique applied to a third
order linear system, with constant coefficients. The extension of Harris' method
to equations with one nonlinearity is given in examples 6 through 12.

Puri's method, Eﬂ , will be discussed in more detail than the other two
techniques because it is more systematic. In the compendium of examples, the
applicability of this method is exhibited. Puri's method was used in
reference &ﬂ to calculate quadratic moments of high order linear systems.

WORK OF GEISS & REISS

This procedure is a simple application of integration by parts to the problem
of obtaining Liapunov functions for ordinary differential equations. The autonomous

nonlinear system which is considered is given by

x = £ (® , £@ = 0. )

We want to find a positive semidefinite form Y¥(x), such that

Vo=@ f®=-Y® 3)

* The numbers in the brackets [] refer to the references at the end of the section.
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V=f\'ldt=—f}b@)dt, (%)

where V is positive definite. The integral in (4) is evaluated by integration by

and

parts. As we know, the integration by parts formula involving two functions of a

single variable is given by

Q/pu (t) dv (t) = u (t) v (£) — u/ﬁv(t) d u (t). (5)

The technique of Geiss and Reiss is concerned with the choice of }Qﬁ) in

th

equation (3). For an n~" order system, their first approximation for)é(g) is

7%@ = x 2, (6)

where the usual state variable notation is assumed to be used. The corresponding

2
V]. =f (" X n) d t (7)

where (7) is evaluated by using integration by parts and considering the system

V - function is

equation (2) as a constraint along the path of integration. If V; is a Liapunov
function, we stop the process. If Vi is not a Liapunov function, we continue with

the following second approximation:

U, = - (x 2+ X x2up)s (8)

2
Vy = - fxndt—o(fxrzl_l d t, (9

where the integrals in (9) are evaluated by integration by parts and < is an

thus

arbitrary constant used to make Vo positive definite, if fossible. If V, fails

to be a Liapunov function, the third approximation is

. 2 2 2
Vg = - (g + X xp-1 + (B xp-9.)- (10)
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The procedure follows this pattern until a Liapunoy function is found, or the
method fails.
The disadvantages of this method are:
(1) it is limited to quasilinear systems of low order,
(2) the vector function f£ (x) in (2) must be such that it can be solved for
one of the state variables.
The advantages of the method are:
(1) The simplicity of the method,
(2) it gives insight into the construction of Liapunov functions,
(3) it can be adopted to handle equations containing arbitrary functions of
one or more state variables,
(4) it can be used to modify an existing Liapunov function, example 1,
(5) it is useful in the construction of instability proofs and in considering
the concept of complete stability, and
(6) for linear systems, the method gives the Routh-Hurwitz conditions of stability.
Let us consider a problem of instability. For example, consider a third order

system. We. select a V of the form

. 2 2 2
vV = c1xy) + CoXg + C3X3 , (11)

where ¢y, ¢9, c3 are positive constants, Thus V is positive definite. By

integration by parts, we obtain

vV = f1(x1, x2, X3; c1, c2, ¢ 3 ) . (12)
If it is possible to choose the positive constants, Ci, such that there are ﬁoints
arbitrarily close to x = 0 (equilibrium solution) where V takes on positive values,

then the system is unstable at x = 0.

Examples of the work of Geiss and Reiss are given at the end of this section.
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WORK OF HARRIS

The method of Harris uses integration by parts after applying certain multipliers
to the original differential equation. This procedure is applicable for low order
systems. In this discussion, we will apply the method to a third order linear system.
In this way we can demonstrate the mechanics of the technique, the reasoning behind
the technique, and how the technique can be applied to nonlinear systems. The applica-
bility of the method to nonlinear equations is considered in examples 6 through 12
at the end of this section.

Consider the third order linear, time - invariant system defined by

X + a; X + a, X + azx = 0. (13)
Multiply (13) by the integral of the first two terms in (13), namely:
f(x + a;x) dt = x + ajx. (14)
Thus, we have
(x + alk) x + alg) + azk X + ajasx x + alaz(i)a + asgx X = 0. (15)
Rewriting (15) gives
% H% [}ﬁ + al:'c)2 + az()'c)2 + a,a, x2 + a4 X = — alaz(k) ? (16)
Applying integration by parts to as x§, gives
a3 x X = a3d§_L_;Q - ag G’ . (17)
t

Combining (16) and (17), we get:

1

- (18)
2 dt

LX) . 2 . 2 L] . 2
[}x + ajx) + ay(x) + a1a3x2 + 2a3xx | = -(ajaz-aj) (x).
Now, define V to be equal to the right-hand side of (18), namely

V = - (ajay-a3) (%)2. (19)
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Thus, from (18) and (19), we can derive the expression for V,
v = (x + a15<)2 + (ap- a3/al)(£<)2 + a1/, (a1x ¥ x) 2, (20)
For asymptotic stability, a Liapunov function defined by (19) and (20) implies
the following conditions:
(1) ajap; — a3 >0,
(2) a;>0, a;>0, a3>0,
which are the Routh-Hurwitz conditions for stability.
A different multiplier for equation (13) can be obtained by taking the
derivative of the last two terms of that equation. The result is
(apx + agx) (X + a;x) + (agx + a3x)(apx + agx) =
= a2§ X + ajas xx + (a2§ + a3§)(a2§ + a3x) + ajas (§)2 + a3§ X = 0. : (21)

The term, aj xﬁ, in equation (21) can be rewritten as

a3 X X = ag d(x ¥) —-a3(§) 2 (22)
dt
Combining (21) and (22), gives
2 2 2 2 (23)
1 4 [éz (R + ajaz(k)” + (agx + agx)” + 2az % kj = — (a1a2-33)(k) .
2 dt
Define 6 as
. “ 2
V=— (alaz - a3)(x) . (24)

Thus, V is
2 . nl a2
2V = (apx + azx) + a3/a1(a1x + X) + (a2- a3kd)(x) . (25)
From (24) and (25), we see that the conditions for asymptotic stability are again
the Routh-Hurwitz conditions.
To summarize, we observe that Harris obtains multipliers by integrating or
differentiating certain terms in the differential equation (13). These multipliers

are applied to equation (13) and the result is that certain terms are perfect
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_7_
squares of the state variables; these form our 6. Other terms are time derivatives
of perfect squares and thus produce our positive definite V - function. By con-
sidering the examples at the end of this section, we observe the same phenomena taking
place when Harris' method is applied to nonlinear equations with one nonlinearity;
except, of course, certain additional integral or derivative constraints are

introduced due to the nonlinearities.

WORK OF PURI

In general, we consider an nth order nonlinear, time-varying system which can

be characterized by

X]_‘Xz
k) = X3,

______ (26)
Xp-1 Xn,
kn =-£1x - £, x - - %,

where

£, 8 £, x,t) , 1i=1,2, ..., n, (27)
f;{ (0, t) = 0, t > 0.

We assume that the system in (26) possesses a unique equilibrium solution,
x = 0, whose stability is to be studied.

We first formulate Liapunov functions for linear, autonomous systems. The
linear equation is

ajx] + agxg + ... + apxy + apy] Xp4+] = 0, (28)

where
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and a1,.0.,8n4) are constants. Denote the initial state variables at time,

t=0, as x;(0), xp (0),..., x,(0). The first step in generating Liapunov functions
is to apply a succession of multipliers to equation (28). Then through the use of
integration by parts, we can eventually generate expressions which are candidates
for Liapunov functions.

Multiply (28) by 2x; and integrate from O to t:

t

2 .
Zalfxl de + 2a2 xlxzdt +. . .2 an+1f XXy dt = 0. o (29)
o

o

By repeated integration by parts, we have

t t t
j-1 j 2 (30)
¥1x2j+1dt = [XlXZj - X2X2j_1 +... + ("1) XJ Xj+]J +("1) Xj+1dt 3
(o) ‘ o o
and
t t
i1 31
X1Xo.dt = | X:X,. - XoX, . + ... +(-1) lxﬂ
172 [ 1 -1 23-2 = .
] 2j 2723 2
o 0
where j = 1, 2,...,.Let us adopt the notation
t
9 (32)
I = 2 xkdt , k=1,2, ... , n.
o
Therefore, applying (30), (31), and (32) to equation (29), there results:
alll - a312 + ag 13 + e = - [(azx% + 2a3 X1Xg + 2a4X1X3+ oo (33)

t
2
.+ 2a xlxn) — (a4x2 + 2agXoxy + ... ) + (a6x32 + 2a7x3x4+...)+...] .
o
The right hand side of (33) is a quadratic form and thus (33) can be written as
t (34)

ajl; - azip + a513 + ... +(0)In = = [xt <1 _}_(] s




where

Similarly, multiplying (28)

as as ay, as ag

az | a4 | -a5 | -ag -ay

ay -ag | +ag ay :

a5 | —3 a7 | 28 : '
ag | -ay : : : . '

.

.

by 2x2 , 2X3 , «..

from O tggfhe following results are obtained:

b

.

t
-a; Ip + aglz - agly, + ... + 0.1, = - [#l:g§3§J
o
t
e« e+« - a2 In1 + ap Iy = - [Et ‘?..<n§:]

The exact form of the last equation in (36) depends upon n being an odd or even

integer.
ay 0 0 0
0 aj as ag .
0 a, | -ag | -ag 5
_24_219 0 ag | -ag ay o

The first few o - matrices are defined as

(35)

(36)

0 a) 0 0 0 [+
aj as 0 a, agf:
0 0 -a, | -ag 01«
0 ay | -as ag 0 fesie
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where E&n can be obtained in the same fashion depending upon n being odd or even.

Now, the equations in (36) can be written in matrix form as:

s1-- ja®- @], 38)
where
—
a] | -a3 as 0 In
0 ap -ay, .« e s 0 I
0 -a) as . e 0 I3
a = . . R I = . . (39)
“8p-2 |&n I
If the matrix a is nonsingular, then equation (38) can be rewritten as
I =-sg" [g(t) - 9.(°):| : (40)
-1 -1
where we denote a as a =pb= [bijJ . Equation (40) is now rewritten as
I xe(0) 85, (B) x0) 8,x (0)
I2 x ¢(t) Sy x (v) x.(0) S, x (0)
= — +
: (1)
I, x(t) S, x(t) x (0) s, X(0)

where

We now define some candidates for Liapunov functions, namely

Vi(t) = x(t) Si x(t) ,i=1, 2, «.., n.

(42)

(43)
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If the ith function, Vi(t), is a Liapunov function, then S* is required to be

positive definite. Referring to equations (41) and (43), we see that

Vi(t) — v;(0) = - I;(t) fori=1,2, ..., n. (44)
Thus, the time derivative is
Vi) = - L;(8) = - 2x2;i=1, 2, ..., n (45)

Therefore 61 (t) is negative semi-definite. If S; is positive definite, then V;
is a Liapunov function for the linear system. The conditions for asymptotic
stability must then be the same as the Routh-Hurwitz conditions. This procedure
for linear systems is applied to a third order case in example 13.
We now consider an nth order nonlinear system represented by
Xn+1 tIpxp +t o) xpop f ...+ foxg + £19x7 = 0, (46)

where the f;'s are defined in (27). Equation (i6) is rewritten as

X, + a X, + ... + ajx) = - F, (47)

n+1 n
where
F = (fn - an) Xn + ...+ (f2-a2) X2 + (fl-al) Xl, (48)

and the aj's are constants.

Equation (47) is multiplied by 2x7 , 2xp, ..., 2%, successively and then integrated

in the same manner as in the linear case, the result being:

t
t n n (49)
I = - [x¢si {l - 2 3 ) bij (fk-ay) xjxdt,
o j=1 k=1
o]
or, from (32),
t t
2 n n
- [xi +2 ) ) bij (f -ap) ijk} de = [§t§i§] : (50)
o j=1 k=1 0
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Multiplying equation (50) by a positive constant c; and then summing over i

gives
t t
n n
Z C; (xf +2 zl ) P (B @) xpmo de - Yy Cixe Six
k=1 i=1 . (51)
o o
Choose as a candidate for a Liapunov function
n
v(t) = Z CixeSi X + (certain terms in the integral (52)

in (51)).

This V-function is positive definite if the §; are positive definite and if the
integral terms are at least positive semi-definite. The c¢j 's are chosen such that

the time derivative is negative semi=definite, The actual procedure outlined above

will be demonstrated in examples 14, 15, and 16.

In summary, we feel that the method due to Puri is much more versatile than
that due to Harris, and more systematic than that due to Geiss and Reiss. Puri's
method can be applied to higher order systems, but the major difficulty is still

that of determining when a form is positive definite.

COMPENDIUM OF EXAMPLES
The first set of examples deals with the repeated use of integration by parts.

These examples come from the papers of Geiss and Reiss. The next set of examples

is obtained from Harris' thesis and deals with the generation of certain multipliers
which aid in the formulation of Liapunov functioms. Also, included at this point

is an example by Ingwerson, (7] , which explains in detail his application of the
multiplier method. The last set of examples is concerned with Puri's method, which
is a combination of both state variable multiplication and integration by parts.

Example 1, [Z,ﬁ

The following example illustrates the usefulness of integration by parts to

modify an existing Liapunov function and its derivative.
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Consider the Duffing equation for a "hard spring":

.x.+a).c+x+bx=0,

where in state variable notation, we have

X] = X2 ,
. 3
X9 = = x7 - axz-bxl,

and a>0 and b>0 .

As a candidate for a Liapunov function, choose

vy = 1/2 [x% + x%]

The time derivative of Vi along the trajectories of the system is
\71 = - ax% - bxi X9,
Because of the term, bxixz s Vl is indefinite. As a new candidate, suppose we choos
02 = - ax% N

which is negative semidefinite. Vg becomes

Vo = f\.lzdt = + f-axgdt = f(-axz) Xy dt

]

2 2
1

x2 + + b

e

4
1

=[(X2 + %1 +bx:]?_') xodt = x_% + f(x1+ bxi) X1 dt X X

2 2 2 4

Thus, Vo is a Liapunov function whose time derivative is negative semidefinite and
V—» oo as ” X ”_, >0 . Therefore, the system is globally asymptotically stable.

In order to apply LaSalle's theorem on complete stability we need a V-function
whose time derivative is negative definite. In the above we have shown that com-

plete stability exists already; but as an example, we will run through the procedure

of obtaining a V3 such that V3 is negative definite. Suppose that there exists

a \73 such that

. 2 2
V3 =-ax3 - xgq.
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2 2
V3=f—ax2dt - [det = V2+ f(-xl) det=

= Vo + f(i{z + axy + bX]_3 ) x1 dt.

Thus,

By integration by parts, the first integral becomes
. . F 2
fX]_Xz dt = X1Xp - fXIXZ dt = X1Xp - fXZ dt
2 2 4
1 x 2 x1 x1
=x1x2+ 3 (77— + =5 +b> 7= )

The second integral becomes

. 2
faXIXZ dt = faxlxl dt =a x1 3
2

thus,
2 2 4 2 2 4
Vi=x2 + xl + b xL + xixp + & G4 + ¥ +b ¥-) +
2 2 A

2 4 1 2 1 2 bl +a) 4
tax +bf"1 de = Gprd® + o G g+ Tt

2 4
+x2+jbx1 dt.
Za
Finally, define V, as

V, = V3 - /bxll*dt

where
. 2 2 4
V4 = - axp - x1 - bxy .
The V, - function is a Liapunov function which satisfies the conditions for

complete stability required in LaSalle's theorem.

Since Duffing's equation is such a popular example, let us continue to '"pump"
it for information. If we replace b by -b, b > 0 , our system describes a "soft
1]

spring." 1In this case Vp is still a reasonable Liapunov function (in fact, it is

a measure of the total energy of the undamped system, a = 0). Vg also tells us
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that all solutions originating in the region 1JLL defined by

2 2 4
J\JL:V2=%+ %-%<1/4b
2 1
Xi-<%s

tend toward the origin. The origin is then asymptotically stable. This region
'\j\zb is not the complete region of asymptotic stability as shown in reference (3].

If x92 > 1/b and Xx1X9 > 0, then the system is unstable.

Example 2, [3] Third Order Linear System

Consider the system
}.{1 = X3,

p:4al
<3

w
w
|

= T a3X3 T aXp — ajx],

where a1, a5, agz, are constants. Let us select a negative semi-definite form

for {7,
. 2
V=- X3
Then,
2 .
V=- fx_g dt = - X2X3+fX2X3 dt

= - Xox3 + fxz (-a3x3 - asxp - ayxy ) dt

a3. 2 2 al] 2
= - XpX3 - -y~ Xy - ag xg dt - -7 X}
2
a3 2 alxl]
= - XX3 - Tpm Xy T T3y — - ay xlxz—x1x3dt.

We integrate the last term to get

- fx1x3 dt = -lglfx3 [agx:; + ajsxg + X3:| dt

2 2
=z-;—l [azx%+ x3 + 2a3fx3 dt]

1 2 2
Zi[azxz'i' x3—2a3VJ.
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Combining the last two equations gives;

al 3.2 0 Xl
a 2
vV = 1 a
x X X as 2/a7. + a 1 X2
2(aga3-a1) 1| 2} %3 1 3
0 1 82/a1 X3

V is positive definite if

1) ai >0,

2) ay >0,

3) asag - aj > 0.
Hence the system is asymptotically stable in the large. The above inequalities
are the necessary and sufficient conditions of Routh-Hurwitz.

Example 3, [2, 3] s Third Ordexr Nonlinear System

Consider the system

k1 = x
. n
Xy = - (xl + cx2) - bx3.
Choose \73 = - xg and using the integration by parts procedure:
2 .
V3 = - fX3 dt = - XoX3 + /x2x3 dt

_ n
= - X9X3 - Xy [(xl + cx, ) + bx3] dt

2 n | n
= - XpX3 - bxz'-/z - f(xz + cx3)(x; + exp) dt + fcx3(x1 + cxy) dt

2

n+1 9 9
=-X2X3-bxz/2 - (xl+cx2) — CX3 —bc/x3dt
n+1 2
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= — X2X3 - bﬁf//// - (x + c%fz///// — cﬁi///’ + bc V3
2 n+l 2

: n+1 2 2
= _ gxl +CX2) +b =xp + xx3 + ¢ X 3] + bc V3 .
n+l 2 2
Thus,
n+l 9 5
V3 = 1 (X1 + £X2) + + +
r— [ —= "5 X, XyXq 5 X 4
and
. 2
V3 = - x3 .

Rewriting V3 gives,

. n+1 !'b 17 - XZ—’ \
V3 = 1 (x]- + CX2) + 1 [:Xz X3J [ °
be -1 n+1 2 ’ 1 x3

Therefore, V3 is positive definite and the system is asymptotically stable
in the large if

(1) bC-]_>O,

(2) b >o0,

(3 n=2kk+1, k =0,1,2,...,

b 1

where (1) and (2) are the Sylvester's conditions for . We have shown
1 C.

that conditions (1), (2), and (3) are sufficient. 1In reference [3] , Geiss and

Reiss show that these conditions are also necessary. This work is repeated below.

Choose Vy = xg . Calculate V5 via of integration by parts procedure:
2
Vo = X o dt = X1Xp - x1x3 dt
n L]
= XXy + 1/b [fl(xl + cxz) + x1x3] dt



- 18 -

n+1

= X1X9 + 1/b f (Xl + CXZ) dt + g_ X1X3 — %_ fX2X3 dt +

n
- c/b f xo (x1 + cxp) dt

2 n+l
= X1%X9 + 1/b x1x3 - 1/2b x o + 1/b (%7 + cx9) dt +

n n
2
- c/b f (x2 + ex3)(x] + ¢cx2) dt + ¢ /b f x3(x1 + cx2) dt
9 . n+l
= X1%Xy -+ 1/b =x1x3 - 1/{2 b) x9 - ¢ (x1+ cxp) +
(n+1)b
n+1 2 n
+ 1/b f (x1 + cx2) dte + /b f x3 (x1 + cx9) dt.
1
Looking at the last integral in V,, we have 1
|
2 n ) ‘
¢ /b f x3(xy + cx2) dt = ¢=/b f X3 (-}'(3 - bxj) dt ‘
2 2 2
= - CX3 4+ ¢ V3 .
2b
Therefore, we define a V2 as
/ n+l
Vp = Vo -1/b f (x1 + cx2) dt
= x1x2 + 1/b x1x3 - 1/2b x 9 - —t—(x] + cx2) — ¢2x3 +¢ V3 ,
b(n+1) . 2p
and
./ . n+l 2 n+l
Vo = V2 = 1/b (x1 + cx2) = x 2 =— 1/b (x1 + cx2) .
/ .
1f we now take a linear combination of V3 and V, , we obtain a definite V:
/ 2 n+l
V=-xXV3 +V2 =[°(-c N c:| (X1 + cx2 ) +
1 - be b n+1
0 1 1/b X1
+ 1/2  |x1.x%2 X3 1 [ﬁ'&ﬁb - 1/b .._‘x_‘cz_ X
e 1-be 1 - bc ’

1/b é—cz"‘ [d—c c - c Xq
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and

. 2 2 n+l
V = Kxj3 S ) -1/b (%1 + cxp)

We see that V is positive definite if X 20 and b >0 . If

°(>c2, ¢c <0, and 1 - (b/c) (K- c2) <bc«1l; then V takes on

positive values arbitrarily close to the origin. Thus, the origin is unstable;
and bec>1, b >0 , and n=2k+1 (k = 0,1,2,..,)become

necessary and sufficient conditions for stability.

Example 4, [—L ﬂ Third Order - Nonlinear

Consider the system

;{1 = Xz Py
}.(2 = X3 )
x3 = - F(x9) x3 - axp - bxj,

Choose V3= ~X§ and integrate by parts:

fx% dt = x9x3 - fx2>.<3 dt

XoXg + f[ax % + bxyxy + F(xy) xzxﬂ dt

V3

2 2
x2x3 + bxl  + fF(xz)xz dx2 + a /x 2 dt.
2

Now consider the last integral:

a fx% dt ax1xp + & fX3 [}23+F(X2)X3 + axp] dt

2= 2 2 2
axqx, + & 323_ + % §2 + %fF(xz) xq dt.
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Thus, V3 becomes

2 2 2
V3 = xpx3 + F(x9) %9 C{xz + _% _}_{_%_ + %_ 3{22__ +

2 2
+ axy x2 + b x1 + f a F(xp) x 3 dt.

/
Define V 3 as

V3/ = V3 - f_a_ F(Xz) X 3 dt
b
= X9x3 + fF(x2) X9 dxg + b x12 + axy xp +
2
2 2 2
+a x3 + _a x2 s
5 7 B
and

*/ * 2
Vg =Vy - 2 F(xz) X3 - [F(xz) - %J %2

. /
We can rewrite V3 as

2

2
vy =_1 |:ax + bx]J + 1 l:ax3 + bx :l +
=% 2 72 2

+ fxz [F (XZ) - b/aJ X2 dX2 .
(]

Thus, the system under discussion is globally asymptotically stable if

(1) F(x9) 2 ¢ = b/a , ¢ being constant,

(2) a >0 and b > O.

Example 5, [3] Nonautonomous System

Consider the example given by
X + a(t) x + b(t) x = 0,
or in state variable notation
L]
X] = X2,

}‘(2 =-axy) - bxy,
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. 2 .
Choose V, = X5 . Integrating V, gives

fx% dt = x1x9 — ‘/‘xl)‘iz dt
X1xp + /axlxz dt + jbxlz dt

2 . 2
X1X9 + ajx; - axg + axj x1dt + ‘bxq dt.

Substituting for x; in the term axjx) , we get

Vo

]

Vo = x3%xy + axl2 + fi l:ax 22+ xz;{zJ dt
b
. 2
+ f(b - a) x1° dt.
Applying integration by parts again gives:
2 2
Vy = X1%9 +ax12+_ag_x2- 2 SZZ
+ a2 x2 j(b a) x
b~ 2
Now define V3 as
2 2 2
V3 =Vy - |- [x2 d(a/b) dt + [ (a /b) x, dt +
2 dt
+ f(b - a) x12 dt s
which gives
V3 =Vy + d(a/b) X a? x2Z (b-2) x>
= - X, - X
2+ dfaltd 2 - g ow 1>

or, rewriting we have

o 2 2 2
V3 =

I
b
N
+
i—l
~
N
QE
[
o
o
&
]
U‘Im
kg
N
]
~
o
»
<
»”
,—l
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Thus, the sufficient conditions for asymptotic stability are
(1) 2a%/b - 1 > o0,

(2) a%/b - 1/2 d(a/b) - 1 > o0,
de

(3) a > kk > 0
a m #m, k1 , ko are constants,

<
b >k, > 0

(4) b-a>o0.
Example 6, Eﬂ

Consider the second order case
X o+ al;c + a?_(x) x =0,
where a; is a constant. Multiply the equation by X to get

o2 .
x x + a;(x) + a(x) xx = 0.

Define 6 as

L] 2 [ Y] e L]
= - a;(x) =x x + a5(x) x x.

<
|

Integrating 6 gives

<}
fi
c\___}
[ morel
N
Ne

2
+ as(x) x i_} dt = L%l + u/1a2(x) x x dt.

Thus, for asymptotic stability, we require
(1) a]_> 0’
(2) ap(x) > 0, x # 0,

(3) V— oo as X2+;(2__.oo.

Example 7, Dﬂ

The next second order case is a generalization of example 6,

X o+ ap (x) x + ay (x) x = 0.
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Multiply by x_ to get

x X + a]_(x)(;:)z + as(x) x x = O,

.
as in the previous case, define V as

\

* o0

- al(x)(§)2 =xx +axx) x X.

]

Integrating V gives

\

1/2(0)2 + /az(x) x % dt.
The requirements for asymptotic stability are

() a3(x) >0 , x # 0,

() ay(x) >0 , x# o0 ,

3) V—— oo as %2+ 2 s oo .

Examnle 8 (4]

We consider a special case of the equation in example 7,

'X. + al(;c) }.{ + a2 x = 0.

Apply the differential operator, X d/dt , to the equation:

X% 4+ X (&% +a)%) +ax x = 0.
Let V be defined as

. .. d[aj() % el . 2
V = - x at = - a (x)(x) — x(x) ga, .
%

.

Integrating V gives

jx}dt= f(;é'{{+a2°§£)dt

vV = X
hued 2 2 > . 2 02
(x) +a(x) = 1/2 [ai(x) X + a x] + asx
= 2 2

Thus, the conditions for asymptotic stability are

@) ai(i) + x dglgig > 0 ifx# 0 andfc#: 0,
3
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(2) 32 > 0:

3) V—m o as x -+ x2u_._><>o.

These conditions are more restrictive than those in examples 6 & 7 because

of the presence of the derivative terms.

Example 9, LZJ

We now consider a third order example, namely

%+ aj X o+ as(x) x + a3x = 0,

where a; and aj are constants. To form a candidate for a Liapunov function, we

first multiply the above equation by Y + al x and then integrate to
get V:
(X +apx) (¥ +a1%) + & +a%) agx + (K + ajx) ay(x) x = 0,
or
d(x + a1>'c) as .
(X + aix) dt + (X + aix) a; (ax + x) +

+ (X + al;c)(—g% x + ax(x) x) = O,
where
v - E% %(;’ + al;c)z + ;%1 o+ ain’ + 12_ (ap(x) —;%);;2
- A - aam@® + L G S

[a3 - ajap(x) + 52(X) (;()2 .
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Integrating V gives

L X ] .2 * 2 L d
2V = (X + a1%x) 4+ 23 (x +apx) + APx) - ¥
a a
1 1
the required conditions for asymptotic stability are
(1) ajar(x) - a3 - a2 (x) > 0, x;éo s
2
(2) ajar(x) - a3 > 0, x;éO,
(3) a; >0 and ag > 0.
Example 10, [4]
Let us consider
x o+ oa(® X + a x + azx = 0,
where a2 and a3 are constants. Also, let us say that al(}.:) =a; + /l/(}'{)
where aj is constant. The multiplier in this case is a2 x + 23 x .
Thus, we have
X (ap X + aj3 x) + aj(as X+ aj x) X +
Lt H B ¥+ a3 X)) X + (a2 X + a3 ¥)(ap x + a3 x) = 0,
or
d | ag;z (D% + 2133 2 1. 2
It /3 G) 2 (x) + 7T (agx + a3z x) +
L.
. see .-2 . .02 . . .o
+ a3 x x + a; an(x) +a2/q(x)(x) +a3/f(x) x x = 0.
Since x X = d (x%) — (EE)2 , the above equation becomes

dt
2 2 . 2
d ag e a1a3 - = + 1 . + +
I [T (x) + —- (x) + a3 x x (arx az x)

o e . e 2 o yon 2
+ a3 /L/ (x) x ¥ = a3(x)2 - aj ay (X)) - ap /l/(x)(x) .
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Thus, define ‘.l to be
L[] L L] 2
v = - [alaz + ay /7 (x) -a3J x) ,
and

.« ee . 2
\ =%2 (35)2'*' ajaj (}2)2+ a3 X x +,12_(32 x + aj X)

[l - 2@ + 2 @i+ D
a1 a1

+(a3x+a2}'()2+a3 /ﬁ(}'{)}’{‘k‘dt.

Therefore, for asymptotic stability, we require

2v

fl

1) a2 - a3, > 0,

(2) a3 > 0,a; > O,
(3) ﬂ(i) > 0 if x # 0,
(4) ajay + a // (x) —a3 > 0 if x # 0.

Example 11, [:4]

The next case we consider is

°}'<'+al'>2+a2>'c+a3x+/y(x)=0,

where ajp, ap, a3 are constants. The multiplier is X -+ ai X

Therefore we get:
G+ ap B K + ap ) + a, x X + a ap D+
+a3x'>2+a1a3x;(+//(x).)5+a1/(x);<=0,
or

g? [1/2 (x + a; >'<)2 + 22/, (}2)2 + 8133 (x)2:\ +a1/7(x) x +

+ ag [:d g::( X) - (i)z:] +a1a2()’()2 + /y(x) X = 0,
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or

1 d . o 2 a .2 a o 2
-fd—t[(x+a1x)+_2(a1x+x)+(a2-a%)x:|+

al
+oap 4@ X = a3 (02 - aja(0? - VAL .
The V-function is then chosen as
.. .2 .2 .2
2V = (x + ajx) + a3/a1 (a1x + x) + (a2 - a3/al) x +

+ a f// (x) dx,

where

. P 2 oo

vV = - (alaz - a3) (x) - ﬂ x) x.
Therefore, the conditions for asymptotic stability are:

(1) a; > 0, a3 > 0,
(2) ajapg - a3 > 0,

(3) fﬂ(X) dx >0,
4 H®% >0 if x# 0.

Example 12, [4]

Consider:

coo .o

x+a1x+a2(x)x+a3x=0,
where a; and aj are constants and ap is a function of X , while in example

9, a2 was a function of X. The multiplier is x + a]_;< Thus

(X + a1 X) (X + ajx) + ax(x) x x + ajazx x +

ve ¢ ‘2
+ a3 x x + a3 ax(x)(x) = O,

or

d . 2 2 46e) =,
1/2 dt (a1 x + X° + a; a3 x + a3 dt (x) +

. .2
+ a) (X) x X + a; a) (x) (x) = 0,
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or

d
1/2 4t [Egl x + ;)2 + ay aj (x)2 + 2a3 x x + a3/al (i)zi] +

S DICIREE Jx ¥ - - (am@® - e @ .
Let & be given by
V o= - (ajay(®) - a3y) (i)z )
where
2V = (ali + §)2 + a3/al (a1 x + i)z + [éz(i) -_23] x X dt.
1

The conditions for asymptotic stability are
(1) aja, (x) -a3>0 if x # 0,

(2) aj > 0, as > 0,

2

(3) V——» oo as x + %2

+ X —_— 0O .,

Example 13, [ﬂ

Ingwerson considers a third order system from control theory which has a
nonlinear gain and a derivative feedback element. The problem reduces to the

consideration of the following equation of motion:

ese (X3 . 3 2 .
x + by x + (byg + b3 cp) x + b3y x + by x + 3by cp x X +
+ 3b4 c% X iz + b4 cg i3 = 0,

where by, by, b3, ¢y are constants. We wish to study the stability of the

equilibrium solution. Ingwerson used a "multiplier" or "integrating factor”
approach to generate the Liapunov function used in the analysis. We present
this method in the following paragraphs.

Let the equation of motion be divided into linear and nonlinear parts:

[L] = % + by X + (by + bycy) x + by x,




and

3 2 .o 2 .2 3 .3
[N] = b, (x + 3¢ x x + 3¢2 x x + 2 x).

First consider the equation [Q] 0. The first and third terms of [LJ

can be integrated if we multiply by'i. Therefore,
o0 - - gz 3:{'2 o
x [ = de| 2 + (2 + b3 c2) 2 | + b1¥2 + b3 x ¥ = 0
The term in the square brackets is not definite and thus cannot be used as a

Liapunov function. The second and fourth germs of [iJ can be integrated if

X is used as a multiplier:

4 | bwE? . 3P
x [1] = at

2 2J+§c'{{+(b2+b3c2)i2=o.
The bracketed term in this expression is also semi-definite, Thus, we try a
linear combination of i and X : namely,

(h1x + % [L] =

9 ) 2 2
x> + (by” + bp + b3 c9) x bybs x +
2 2 2

ve -o2 . .2

Since

d (k%) d (xx)

x % %2 = dt and dt = x x + (}E)2 R
then the above can be written as
(bl;c + % [1 = d_ (X_z +b1§< X + (bi2 + by + b3 cz)iii +
dt 2 2
+b3x x + b1 b3 xz/zJ + (b1 b2 + b1 b3ec2 - b3) %2 = 0.
Thus, for the linear equation, [;] = 0 , we choose the above bracketed term

as a candidate for a Liapunov function. Its time derivative follows automatically

from the above equation. Therefore Vy, and GL are

h.2 L) LX) 2 .2 L]
Vi, = x/2 + by x x + (by + bp + b3 ecp)x/2 + bz x x +

2
bl b3 /2 ,
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and
Vi, =- (by by + by bgcy - b3) %2,
Consequently, the following conditions must be fulfilled if the linear part is

asymptotically stable:
(1) byby + bib3ecy - b3z > 0,

(2) b;by > 0,

2
(3) byby (by + bycy) - b 3 > 0.

§
Ingwenson now applies the same integrating factor to the nonlinear part,
[N] , of the equation of motion. Thus, after applying the multiplier,

by x + X to I:N] and then integrating by parts, the result is

3

. . S 2 .3 b4c2 4 3 2.2
(b1x + Xx) I:NJ = dt bseop x x + 4 x + 5 cpby x x4+

] . 2 - 3
+ by 3 x + by by, x 4/4J + by(bycy - 1) (3x2 + 3cp X xX + ¢y xz) x
Let the bracketed term be V; . Computing the partial derivatives,

}ﬂ andm

b

ax 2ax
we see that Vp is monotonically increasing in x and x and is zero only at
x = % = 0. Thus, Vp 1s semi-definite in x, }'c, and x. The time derivative
of V, is
. 2 . 2 2. .2
V, = - by (bjeg - DBx + 3c2_ x x + cp X)) x.
Now for the original equation of motion, [L:] + [_N] = 0, we choose

as a Liapunov function

V=VL+VN,
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or
X2 o 2 }.{2 .
V = bjbg /2 + b3 x x + (by + by + co b3) /2 + by x

2 2

2
3 4
+ b, ¢5 x° ,

where the time derivative is

. 2 z o 2
v = - b]. bz + (bl Cy - 1) l: b3 + b4 (3x + 3C2 X X -+ cy
V is non-positive for:
by b2 + (b1 ec2 - 1) [b3+b4(3x2 + 3¢y x{:+c22
Thus, the system is asymptotically stable if the linear part is asymptotically
stable and the above inequality is satisfied.
Example 14 (3] Third Order Linear Case
Consider a linear, time-invariant, third order system
al Xl + 3.2 X2 -+ 3.3 X3 + 34 X4 = 0,
where xj = dix/étiu We now apply the various multipliers, 2x1, 2x2, and 2x3
to the equation and integrate: |
t
2x1 (al X1 + agp x9 + a3z x3 + a5 x4 ) dt = 0,
o
or t
aj Iy - a3 Iy = - [az xf + 2a3 X1 x2 + 2a4 X1 X3 - a4 xz{]
where ©
az as a4
¢ 2
Te = 2 J" xx dt, and X = a3 -ag 0
o
a4 0 0

X o+

o3

3



Thus, we have

a1 Ii

where xT = [*1, X X%J

- a3 12

- {-E T X

t
X
o
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t
f 2x9 (a1 x3 + ap xp + a3z x3 + a4 x4 ) dt
o

or
az I
and
t
o
or
-a; I

The above equations can be written as

- a4 Ij
2X3 (al X1
+ 33 13

+

The other analogous expressions

are:

ajsp x9 + a3z x3 + a4 x4 ) dt

- [ X7 553

1%
L

a matrix equation

aj -ajy 0 Il
0 ap -ay I, = Q(o)
0 -al 8.3 13

= 0,

aj 0 0
0 a3 34
0 as 0
= 0’

0 al 0
a; a, 0
0 0 3.4
Q (t)
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where

Qp = [éle X > X ody X, E oy §:]

Solving for [Il’ Iy, Ié] yields

2
I1 aga3z - aja4 a 3 a3a44w
= 1
Iy ai(agaz - ajay) 0 ajas aja; [(@QCo) - Q(t))
I 0 2 aja
3 aj 1<2
Let A = asas - aja, and choose V as follows:
V=x 83 x
= x b X <+ b + b X
~t [ 31 71 32 gé 33 9'<3 J -
af af a 2 0
2 2 2 2
= Xe 1 aiy as ay a3z + ap as a; ay X
al A 5
0 ay ay a) a a,
where
. 2
v = - 2X3 .

V is positive definite if S3 1is positive definite; thus, the required conditions are

(1) a3 >0, a3 >0, a, » 0,a, >0,
(2) 3.2 33 - al 3.4 > 0,

which are the Routh-Hurwitz conditions for asymptotic stability.

Example 15, (5]

We now consider a third order nonlinear differential equation:

X+ g3 (X X+ a, x + a; x = 0,
or in index notation,
a; x| + a9 X9 + g3(x3), X3 + Xy = 0,
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where X, = dx /'dti . Also, we assume g3 (x3) has the form

= (g3 -a3) x3 , where a3 is a constant. From equation (49) and example 14,

we have:
t t 2a2 ¢
I, =- {%T 81 EJ _ 2 f(xy) xxq dt _ 3 f(X3) XX, dt +
al al A
o o o
- 233
2
A f(x3) x 3 dt.
o
t 2
Ip = - E‘.T 82 EJ—% (x3) xpx3 dt _ —-j £(x3) x3 de,
o ° o
t t 2 t 2
I3 = - [%T 83 5} - 2 £ ) mxyde - 2220 £(x3) x3 de,
A A
o o )

where Si and A are defined in example 14. I, and I3 are less complicated than
I;; thus, we will let C; =C3 =0 and C; =1 in equation (52). Hence, we choose

as a Liapunov function

t
v(t) = Xp 8 x  + 2a4 f(x3) x9x3 dt,

A

o

= X7 Sy x + _3 f(x3) x2 dxp
A
o
where x = o is the equilibrium solution. The time derivative of V is obtained

from the equation for Iy and from equation (45):

V() = -2 - (2/a) f£lx3) x5
The conditions for asymptotic stability which are derived from V and \.7 are
(1) a3 > 0, ap > 0, a3 > O,
(2) azaz3 -a >0,
(3) £(x3) = g3(x3) — a3z 2> 0.




Example 16, [_-5]

Consider a nonlinear differenti
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al equation with three nonlinearities:

X+ g3 & % + gz()'c) x + g1(x) x = 0.

Rewriting in index notation, we have
alxl + 32X2 + a3X3 + Xa
where a;, a5, and aj are constants.

write Iz as

L, =- [:§T Sy X
t
N
-233 (82
A
(o)
t
-2 (g3
o
t

-2 j[ (21
A (=]

The last integral can be writt€n as
t
(1 - a)) xx3 dt = (g -

o

= (a; -81) x; + (ay-8y) xy + (a3 - g3) x3,
1 "8 X 27820 %2 3 3 %3

From equation (49) and example 14, we

t t
2a
_ 3 (g1 - al) X %o dt +
A
0 o
t
. N
< 2a
- a2) X 2 dt - 3 (g3 'a3)X2X3 dt +
A
o
t
2
-a3) xg3 dt - 2 (g9 -ag)xyxy dt +
A
o
-al) X1X3 dt.
t
- dgl + - 2 dt,
a1) X%y [;i X1 g1 a%:]x 5
1

where x = 0 is taken as the equilibrium solution. We now choose V(t) as
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2
A

or from the equation for Iz, we have

t
2
v(t) = - 12 - 233 (g2 -az) xp dt +
A
(o]
t 2
-2 (g3 - a3) x3 dt +
A

(o]

t
- 2 dg) 2 4
h | (T oxp gy - oay) x2 9k
(o]

Thus, the time derivative of V(t) is

: 2 2
V() = - 2x5 "“Eié (g2 - aj) X9 - 2
A ’ A
d
+ 2 | c81 - 2

2
A [§382 - g - g8l x{} il

The conditions for asymptotic stability are

E

(1) al N 32 ) a3 > O,
(2 ap a3 - a3 > 0,
(3) 8 =-2a ., 8 -~ 2,83 -az3 >0,

(4) a3gy -8 - dey x; 2> 0.
dxj

X1
2&3
A
o]
+ asg (g3

(&7 - ap) x dx

- 33):] xp dx3;

2
(g3 - a3) x 3 +
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It should be noted that the first two terms in V(t), namely

X 8, 2 ¥ —i— (81 -2 xx
can be written as
ajajy g1 0
2
x s*¥ x where s* = 1 az + a a
Sg =g = =2 T &1 3 2 3
0 a3 1

Stability also requires that So* be positive definite.

Example 17, [ﬂ

Now we consider the same nonlinear system as in example 15, except for
the addition of a time-varying forcing function, p(t). The equation is
Ko+ ogy B ¥ o+ g, () % + gfth) x = pt),

or in index notation

arxy + as X9 + ajz X3 + X4 = (al -gl) X1 + (a2 -g2)x2 -+ (&3 -g3) X3 + p(t):

where 4;, 8, ag are constants. Again, let us consider the formulation for 12:
t t
I =- [§t§2 ?EJ — 233 (g1 - ap) xpxp de +
O A o
¢ 2
- Zﬁ"f (82 '32) X2 - _p() dt  +
A Vo g2 - ap

t
- 2 Jf - 2
A Yo (g3 - az) [X3 - _pe) dt  +
g3 -~ a

[

t
j;r [(gz - 8.2) + 83 (83 - 83) ] Xz X3 dt +

t t
- 2 J[ a3
A R (g1 - a1) x1 x3 dt + Jo |A(gy - ag) +

L ] pz(t) dt ,

+ A (83 “3-3)
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If there exists certain positive constants Kj, Ky and K3 such that
(1) g -3 > Kk
(2)
(3

=

1/4[__/.( a3/k2J f p? (t) dt £ kq

then the Liapunov function can be chosen as

X

1

E‘TEE §]+ iﬂ] (g1 - a1) =% dx; +
o

V(t)

+ 2
A . o [(gz - 32) + a3 (33 - 33) ] leciXZ +
t
+ 2 [h - 4 [ 83+ __1 Jp%ad{]
A 82 - a 83 - aj >
(o]

and
. 2
v(t) = - _EEZ [: agaz - gy - dgy X{] - Efé (g2 - ag) times
A ey 5
{% - p(t)_]Z 2 p) | 2.
g2 - a2 — A (g3 - a3) (x3 - g3- 33)

V was derived from the equation for Ij. (The notation in this example is the

same as in the previous examplesj For asymptotic stability we require:
(1) a;, a2, a3 > 0,

(2) g -aj, 8 -ay,83 -2a32> ky >0 and gy - ag> ky DO,

t
€) (1/4) (a3/y, + /gy ) f p2(t) dt £ ky,

o

(4) a3y - g - (dglig, dx 70,




(1)

(2)

(3

(4)

(5)

(6)

(7
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THE VARIABLE GRADIENT METHOD
SUMMARY '

In this section the variable gradient technique of generating Liapunov func-
tions is discussed. Modifications of this method are also coﬁsidered. A large
compendium of second, third and fourth order examples is given at the end of the
section.

INTRODUCTION

In 1962, Schultz and Gibson published the results of Schultz's thesis investi-
gation, [1]* . The idea behind their procedure is baséd on the results of Massera's
work concerning the existence of Liapunov functions for certain asymptotically
stable systems. If a V-function exists, then we assume that  ité. gradient, YV,
also exists. If VYV is known, then V and V can be determined. Therefore, their

procedure is to choose the form of the variable gradient, YV, such that the

line integral

X
V(E)T[ YW o-dx
(o]

is independent of the path of integration and such that V and 6 satisfy the proper
conditions of definiteness and closedness. This method of generating Liapunov
functioﬁs éssentially begins in the middle of Ingwerson's procedure, which is
described in section [Z] of this report. The systems which will be analyzed

th
by this method are n  order, nonlinear, autonomous systems described by:

I

=£f %),
(1)
f@=0.
The discussion of the variable gradient method is presented in many references; -

such as, references (1] through (7].

In_reference [8], Puri begins his analysis by choosing a simpler form for
* The numbers in the square brackets,[], refer to the references at the end

of the section.
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VYV than that of Schultz and Gibson. For certain problems this choice for VV
gives results with more ease than the original method. Also, Puri makes use of
matrix algebra to a greater extent than Schultz and Gibson. The disadvantage
of Puri's simplification is that it is not as versatile as the original method.
Ku and Puri, [9) and fid , modified the variable gradient technique. In
their analysis of equation (1), they assumed a ''generalized" quadratic form
for V; namely,

V=XT§ X . (2)

The § matrix is symmetric and the elements are functions of the state variables.

The elements of S are chosen such that the B matrix in

, (3)

Ko

V = (W) %X =3x.B
@) x =2 B
is a form which is very nearly that of the matrices used by Schultz and Gibson
in the variable gradient method. Combining equations (1) and (3), Ku and Puri

form the following equation for 6,

6 = Xp T x. (4)

Therefore, the equilibrium solution x = 0, is asymptotically stable if T is
negative semi-definite and S§ is positive definite, along with certain closedness
properties being satisfied. The T matrix in equation (4) is called the

Liapunov stability matrix. The authors describe two procedures to determine the

stability conditions of the system in (1) from the properties imposed upon the
S and T matrices. A detailed discussion of these procedures is found in Mekel's
thesis, reference @ﬂ .

In reference [d , Puri combines some of the concepts of references (8] and
(9] to arrive at a more systematic approach for the generation of Liapunov func-

tions.
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In the examples at the end of the section, a linear, time-varying system is analyzed.

by this method.
The work of Ho, Goldwyn and Narendra, &3 s @4 , and @S , considers a
procedure which is similar to the variable gradient method. This new method

generates Liapunov functions for nonlinear systems of low order by generalizing

the concept of a common Liapunov function for a linear, variable-parameter system.

The common Liapunov function is a V-function which is a quadratic form, X P x,

where the choice of P depends upon the intersection of certain sets of matrices.
This choice of V is more useful than choosing an arbitrary positive definite
quadratic form; and the problem of determining the intersection of sets is more
tractable than some of the other methods of finding V-functions.

At the end of this section is a sizable compendium of examples, due in
a large part to the Ph. D. thesis of Mekel, (i1 .

WORK OF SCHULTZ AND GIBSON, [1] THROUGH [7]

We want to analyze the stability properties of the equilibrium solution,
X =0, .0f equation (1). The variable gradient technique of generating Liapunov

functions begins with the choice of a certain form for VV, namely,

211 a12 o+ | 2 ,n-1 a1n S|
as az2 + o+ «| 32.p-1 an )
VvV = Bx =| . . . . . .
an-1,1 an-1,2 " - - 83-1,n-1 | ®n-1,n Xn-1
2n1 2n2 ©t an,n-l &nn %n

(5)



The elements in B have the following form:

2ij = bij + Cij(xl, Xy, eees xn-l)’

i # 9) ©
bij = constants, for i, j = 1, 2, ..., n,
and
ajj = byz + eii(xy),
for i = j=1,2, ..., n-1, 7
a,, = 2.
The state variable, x, , is treated as a special case because x, usually
appears linearly in the equations of control theory. Thus, if a . = 2, we
have x., appearing in the V-function as xi, with a unit coefficient. Once
VV's form is chosen, then V can be obtained from equations (1), (3), and (5).
Also, from equation (5) and the line integral
X
vV = f Yv - dx , ®
el

we can determine V if the 'independence of path' restriction is imposed. From
calculus, we know that the integral in (8) is independent of path if V¥V
satisfies the n(n-1)/2 curl equations:

d (Wi _ @D (9
3Xj ! ’hxi

t
where (JV); is the i~ component of YV. The object of this procedure is

to choose the constants, bjj , and the functions, cij » in equations (5), (6),

and (7) such that V is a Liapunov function with the desired properties.
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The following is a stepwise procedure to be followed in the application of

the variable gradient technique.

1) Choose VV as in equations (5), (6), and (7).

2) Compute V= (V)1 £ (x). By choosing the b j 's and Cij 's to be
certain quantities, make 6 negative semi-definite. (This is
basically a trial-and-error procedure).

3) Apply the n(n-1)/2 curl equations, (9), to VV to determine the
remaining unknowns.

4) Recheck G to see if it is still negative semi-definite.

5) Determine V by the line integral in (8) and find the region of

asymptotic stability. Since the line integral is independent of

path, the most convenient method of evaluation is
Xl X2 X3 n

V= f & ax, + Qv 4xt V. dxg ...+ Qv dxg,
L ax; ax2 3x3 . 2xn

(x9=...=x,= 0) (x3(=...7.%3=0) (x4=...=x,=0)
6) Check the closedness of V; that is, we must show that

Lim V(i) =-°0.
Nxf)> <

PURL'S WORK (gl

We again consider equation (l). Puri assumes that the gradient of a

Vi-function has the form given by

W; = B x,

1. Then, 61 is formed: (10)

where B is symmetric and bnn

Vi = (Qu)tx = xrBrA x = xxI x,

where f£(x) in equation (1) is written as A (x)x, and matrix T = By A. Since 61
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is expressed in a ‘quadratic form', then the matrix function T can be written in

an equivalent triangular form:

t11 t12 €13 + - - | f,n-1 | tL,n
0 €22 23| - t2,n-1 | “2,n
0 0 tg3| « + - |t3.n-1 t3.n
Te = . . . . . . (12)
0 0 0 e e tn-1,n-1{tn-1,n
0 0 0 . e 0 tnn
There are [éjgill - ] unknown elements in matrix B. Thus, we need the same
2

number of independent relationships involving the elements of B. If all the
elements in Te, except one of the diagnonal elements, are set equal to zero, we

have the required number of relationships involving the elements of B; and by

our choice of which element of Te is nonzero, matrix Te can be made semi-definite.
We next check the elements of B to see if the curl equations, (9), are satisfied.

It is at this point Puri's modification may cause trouble., In order to check the
curl equations, the symmetry of B may have to be altered and a new V-function
formed. Then, the next step is to recheck the semi-definiteness of Te. If this
"checks out', we integrate YV as in the previous method to obtain the final Liapunov
function, V. 1In the examples, Puri's modification will be amply illustrated.

THE WORK OF KU AND PURI, [9) and fid

h
Ku and Puri consider the stability of the equilibrium solution of a nt

order, autonomous system described by

n -1
x( ) + a, x(&..?u+ ajx =0, (13)

where the a's are functions of the variables x, x(l),.,., x(n-l). Th

(1)
X

e symbol

is defined as the i-th derivative of x with respect to t. In the usual




-7 -
matrix formulation, equation (13) is written as

x=A(®)x = A x, (14)

>

(1) (2) RCE DR

where X] = X, X9 =X » X3 = X seseees Xp

é = . . . . . . . (15)

0 0 0 0 0 1

-al -32 '3.3 '&4 o« o e -an_l -an

P
rt

umed that the coordinate system is such that the equilibrium solution is

'-J
w
%]
(%]
w

1%
I
{[=]

V=%x85 % (16)
where § is a symmetric matrix function of x. The type of elements in matrix §
are obtained from the authors' experience with the variable gradient technique.
It is for this reason that we place Ku's, Puri's, and Mekel's work in this section
of the report. An example of the S matrix used by Ku and Puri will be given
shortly. 1In Mekel's thesis [}g , a slightly different form of S is used in most
of his examples.

Similarly, the time derivative of V related to the system in (l4) is assumed

to take on the form

‘°7=95T.T.§, an
where T is a magfix function to be determined. For the asymptotic stébility of

X =0, we require that S be positive definite and T be negative semi-sefinite,
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along with certain closedness properties of V being fulfilled.

The authors consider two formulations for V. The first formulation is

=z @S +SA +8) x-x I x, (18)

where

12
.

S+8 A+

(19)

The second formulation of V is derived by first computingVV = B x and then forming

vV o= @W)x = xr Br A) x = xr Ip X, (20)
where

I-z. = ET‘ _:é' (21)

The matrices T; and I, must be negative semi-definite. To insure that this is the

. , must satisfy the following conditions:

case, the elements of T, T]._J

T;; < 0, for i = 1,2,...,n,

Tij + Tji = 0, for i # jand i,j =1,2,...,n. (22)

As we will show later, Mekel in reference [}j verifies that the above formulations
give identical V and 6.
The form of the S matrix used by Ku and Puri, in [9] , for a fourth order,

autonomous system is

Y f f f
k.o + Y11 |k, + 12 |[kya + 213 kg, + 114
S T B 3 R = Rt
S
s = (23)
L £12 + Y22
k12 2x; | k22 %3 k23 k24
kj3 + f13 |k23 k33 + Y33| k34
2xq 2
x3
ki3 + f£l& |kog k34 Yah 4 k
13 o . | 4 +kyy
x4




where Y;; is an even function defined by

Xi

(24)
Yii = )Ii(xi) dxi, i = 1,2,3,4.
(o]

Since Y. The

ii is an even function of X4 then ¥i is an odd function of x

in

kij's are constants to be determined and the fli's are unknown functions of Xy

The yq, kij and fy; are chosen such that V is a Liapunov function. The B matrix

in equation (21) which is derived from (23) has a form nearly like those considered
by Schultz and Gibson.

In the following discussion, the equivalence of the two formulations for 6
is presented by considering examples of Mekel.

MEKEL'S WORK EU:'

The two formulations for obtaining the time derivative of V, as described
above, are now illustrated by a third order nonlinear system with three non-
linearities. 1In the first the T; matrix is derived and in the second

formulation the T2 matrix is derived.

First Formulation

The nonlinear equation is

X+ [a3 + @ (x, i)] X + g(® + fx) = 0. (25)
The matrix A in equation (15) becomes
0 1 0
A = 0 0 1 (26)

-g/xl -%/Xz -(a3 +-¢)

where £ = f(x) ), g =g (x9) and }£= ;5(XL§2). The S matrix in equation (16) is

given by
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ki1 + Y1 +Y kip + fl/ ki3
— x] (27)
%1
k + f1 koo + Y2 + Y k )
12 /%, 22 Z 4 ¥ 23
Xy
k13 k23 1

where the kij's are constants

These constants and functions are to be determined such that V is a Liapunov function.

Since V is a '"quadratic form", the matrix T; in

an equivalent T, defined by the expression (2
-1 e

I‘{ ‘:H““

and Yi = Yi(xi)’ f]_ = fl(xl) and Y = Y(Xl’

Xz).

equation (19) can be replaced by

A +85).

Thus, from (26) and (27)

we have:
£
-ki13 £/x kyp + Yy 2+ Y _ k13 &€ k12 + -}% - k13(a3 + ¢)
X1 X2
2 8 A =2 | ko3 £/x] | kip + f1 _ ko3 € kpp + Y2 +Y _kyz(a3 +§)
X X 2
1 2 %2
-f/x1 k13 - g/x2 kp3 - (a3 + P)
and
° ]
2 3 1
x1 xl
14 L
s = E?l'/ - f1/ szz ¥Y2' x3 + ¥ 2(Y2 + Y) x3 (O
*1 X1 <2 %3
2 2
0 0 0
nypn -
where is defined as d or d Again, because V is written in quadratic form,

dxl

dX2

.
we have an equivalent form for S:
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0 1/x; &Y _ YL+ ¥ 0
axy Xy
) oY Y2 +Y
Y1/ £/ - f1/ /%, ax, 2
2%y 1 X] 2 72 Xo
0 VP4 0
R /2x9

Combining equations (28) and (30) we form an equivalentgl'e

L3
.

(30)

— k3 f/x |kt L Ay kL3E k12 £l k33 +g)
X1 axl X | X1
YU kpy /x| kg + L - k3 €/ Ry, tL % — kay3(az + 4.
2x) X3 8%2
g ¥2'

Applying conditions (22) to equation (31), the unknown terms of T; * can be

determined.

ky3

Thus, we let

= 0.

If ‘¢ is constrained to be a positive function, then element T33 <& 0 when

kos

For T13 + T31

ki
and

5

For T23 + T32 =

kyo

ar2

sz

and

pY

axy

= 83 .

=0,

[l
h
"

=2 g(x2)3

‘}3 X2 ¢ (xl, Xzﬂ.

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(3))
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From (37) and (38), we have by integration

%2
Y, = 2f g(xz) dx, =2G(x2),
o
and
axz
Y = a3 %2 ;5 (x1, x2) dx2,
o
For le + T21 = O,
kll = 0,
and
W1 = 2a3 f£xp).
A,
Integrating equation (42) gives
1
Y, = 2a3f f(x1) dx1 = 2a3 F(x1).
o
The remaining term, _1 BY » in Ty can be obtained from (40):
Xl ﬁ-l
X
2
1o %3 )
X] X} = X] X9 9{ (X1,%X2) dxo .
(e} -ax:l
®
Therefore, an equivalent matrix for T; ~ can be written as:
X
2 .
1 X1
T =2 0 | - |ay 82 _ £ (x1 )} 0
X2
0 0 - %(xl,xz)

(39)

(40)

(41)

(42)

(43)

(44)

(45)
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where V = xpIx. Matrix S in equation (27) becomes
Yl. + Y
2 £(x1)/
X1 X1 0
s = £ 2 +Y2 +
S (Xl)/xl a3 Y ag ,
%
0 ajs 1

where Y,, Y and Yy, are defined by (39), (40), and (43) respectively.

V = xp § x, we have
X2

Since

V = 2a3 F(x1) + 2 £(x1) x2 + 2G(x2) + 2a3f 75 (x1,%x2) sz.xz +
o

From (45), we have the time derivative of V,
. . 2 2
V-2 fay ety - £1GD [ x5 -2 Fem) x5+

x, | 9£(H,X2)
+ a3 x2 f ax]_ X2d X2.
o

For V > 0, we require that
F(x) > 0 , or x1f(x1) > 0,
G (Xz) > 0 , or ng(Xz) > 0,
and
}S (xl’ xz) > 0.
For V < 0, we require that
[a3 sGepdixy - £'G)) > o,

%(Xl’ Xz) X § >/ J] > 03

(46)

(47)

(48)

(49)
(50)

(51)

(52)

(53)

(54)
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and

2
23 XZ[ 3 id}(:lil,XZ) lec’.xz < (f

(o]
.

As long as the closedness properties are satisfied, equations (49) to (55)

give the conditions required for asymptotic stability.

Second Formulation

Using the § matrix in (27), we can write V = %7 S x as

V = k11 x12 + Y1 + 2 k1o x1x2 + 2f1 %9 +

+ 21(13 X1X3 + k22 X22 + Y2 A+ 2 k23 X9X3 +
2
+ X3 + 2Y-

Partial differentiation of V gives the following components for NV:

W = 2kyx; + dYl + 2 Y+ 2kjoxp + 2 dfl xp

Ax] dxi x1 dxi
+ 2k13 X 3

P\ dy2 dy

BXZ = 2k12 X1 + 2f1 -+ 2k22 X9 + dx2 + 2 dx2 +
+ 2k23 X3,

P\

BX3 = 2kl3 Xl + 2k23 X2 + 2X3.

If we now express the gradient of V in matrix form, we have

/ ,
k +YL + 1 2y kiz2 + f1' k13 x1
neo2xy X] ax]

SV o= B ox =2| kg + fl/y | kpp Y2 +1 X | ko3| | x

2x9 Xy 0x]
k13 ko3 1 X3

(55)

(56)

(57)

(58)

(59)

(60)
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Combining equations (21), (26), and (60) gives

kg £/ | kg +EL 4 L o - k13g/ kqy + f'l_/ - kj3(a3 + B)
X
2

X1 X1 3}(1 X1
I =2
/
kg3 fyx) | K1 + £1' - ko3 B/x, | kpp + Yz + L. A _ kp3(a3 +/)
2% Q. 8xp
- f/xl k13 - g/x2 k23 - (33 +;{)

Applying conditions (22) to equation (61) allows us to determine the unknown

elements of the T2 matrix. As in the first formulation, if we start with

Kl3 = 0, f > 0, k23 = 3.3,

and then proceed in a similar fashion as before, we arrive at the same simplified

T matrix as given in (45), Hence, V and 6 are the same as obtained by the first
formulation and the stability conditions are also the same. Actually, if we
consider (31) and (61) very little difference in the matrices is seen and
in fact, the two matrices give the same quadratic form V= 2 I x.

Mekel also shows in reference [}ﬂ that the first and second formulations
lead to thé same stability conditions for a fourth order system with three

nonlinearities. This work will not be repeated here, but it will occur in

the compendium of examples at the end of this section,

PURI'S WORK fi2

Since this material is practically the same as given in the previous
discussions, we will only briefly outline the procedure. Consider the nonauto-

nomous, nonlinear system given by

= A (§>t) X

%o

where A is the same form as given in (15) but now a; = a,;(x, t). The

equilibrium solution of (63) is taken as x = Q. The choice for a Liapunov

function is

(61)

(62)

(63)



where S is symmetric and the elements are

Sig = _fii (xi) ,i = 1,2,...,n-1,
2
xi
Snn = 1 ’
sgy = LLiGx,E) o, i 55 4y =1,2,..., n.
Xi
The time derivative of V is
Vs @WrA x + x8 x = 5 @A+ Dx = xnlx,
where T = BpA + é and (YV)g = Xp Bp. The B matrix in (¥V)g is of the
form:
£11/,,| 2 £'12 2£1,n-1 2 £'1n
1
2£ 12/41| £'22/4, 2£2,p-1 2 £'2q
B = . .
= 2f13/x]_ 2f23/x2
. . f'n-1,n-1 _
. xn-1 2 f'h1n
2£1n/ 2£2n/ 2 fn-1,n 2
X1 X2 xn-1

The arbitrary functions, fij’ are chosen such that elements, T

the conditions

Tii € 0

and Tij

+ T3 = O.

Jx

ij°

of T satisfy

Thus, T is negative semi-definite and the elements of S are known.

conditions are then obtained from the requirement that S be positive definite

and from those conditions imposed by equation (68).

The stability

(64)

(65)

(66)

(67)

(68)
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WORK OF HO, GOLDWYN AND NARENDRA, (3, [4, ({ij

The authors considered the following systems:

x = £ ® ,
x (0 = ¢,
£ © = o0 ,

where C is any initial vector. The only equilibrium solution that the above

systems have is the null solution, x = o. Also, the authors only considered

asymptotic stability in the large, (ASL); that is, x(t)»0 as t-—»<o for any C.

The Liapunov functions used to analyze the nonlinear systems are generated

from common Liapunov functions, (CLF), which are derived for various types

of linear systems.

linear, non-feedback system and a linear, feedback system was obtained. The
results were then used to analyze a nonlinear, feedback system. Also, in

@ﬂ, the CLF concept was generalized in order to be applicable to a nonlinear
system of the form é = A (x) x. In @ﬂ , @ CLF was defined for a linear,

variable parameter system of the form x = A (Kl’ Koseurs Km) X, where

Ky, Ky ..., K, are system parameters. Using these results, Liapunov functions
for certain nonlinear equations were generated.

All of these problems assume that i = -Xp Qx is known and we search for a
matrix P such that V = Xp P x is positive definite. This is the approach of
the variable gradient method. The difference here being the technique used
to obtain P given the matrix Q. We now present the various problems considered
by the authors,

Let's consider the feedback problem. The linear system with no feedback
is defined by

=AXx , A T constant;

X

(69)

(70)
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and the linear system with feedback is defined by
X = Ax+dm (71)
where ¢ and d are constant vectors and
m=Ccp X . (72)
We assume that both systems (70) and (71) are ASL. If a CLF for both (70) and

(71) exists, then the form of V is given by

V=xPx, (73)
where P is a constant matrix. The time derivative of V corresponding to
(70) is
Vo= [5T2+25}5=-5T Q x, (74)
where Q) is positive definite. The time derivative of V corresponding
to (71) is S
V =X [A+92TJT£.&_+3£T£,; [:A__z +d 9.]5 (75)
=-x Qx,
where
'g2='SL+EQET+EQT P. (76)
Thus, Q) is positive definite if
m x Pd <0, (77)

where m = cq X

Now we introduce the following nonlinearity into the

feedback system:

0 € fm u ¢ 1 , (78)
m m
where u = f(m), the system equation becomes
X =A x + d u. (79)

As a candidate for the Liapunov function of (79), we consider the form given
in (73). The time derivative of V corresponding to (79) is given as

Vo=x, (A P+P A x +2u x_ P d (80)

5T T -
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This nonlinear system is ASL since from (77), (78) and (80) we have:
uxy Pd <m x P d £ 0. (81)
Thus, if there exists a CLF for systems (70) and (71), then for a nonlinear
feedback system defined>by (78) and (79) there exists a Liapunov function which
guarantees the ASL of the system. Namely, the same CLF as given for the linear
systems. With suitable restrictions on the vector function, £ (x), this
analysis can be used for stability studies of the system defined by
x=£(x) +d u. (82)
Also, in reference Eﬂ , the CLF concept was generalized such that the

nonlinear system

=AM x (83)

1% e

could be analyzed. We begin this analysis by considering a linear system.

That is, for the linear system

= A x, A = constant, (84)

[¥e

the necessary and sufficient condition for ASL is that for any positive definite

matrix Q there exists a positive definite matrix P such that
Q =- (4 R+PA. (85)

The solution of (85), given Q and A, is

* @) . A)e :
- /e Qe & dt o, (86)

P =

o
if Re ( )\K(é) ) < 0 for all the distinct eigenvalues of A, )\K(A_). We now let

{g} be the set of all positive definite matrices Q. The corresponding set
{2} is a subset of Zg_} and is the image of the mapping of set {Q} into itself

under the transformation defined by

[} =-@e +2 W, (87)
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or

oo At At
f2l -- f e 7 fele (88)
)
where A is defined by (84). If Re ( >\K (A) ) < O for all K, then the mapping
is unique.
Using the above results from linear systems, the sufficient conditions for
ASL of the nonlinear system (83) can be derived. We let Xo be any fixed vector
in the whole x - space and define A (x0) to be @_3 the set {_129% are the P's
corresponding to Ao and defined by (88). The resulting conditions for ASL are:
(i) Re ( >\K(Ao) ) < 0 for all xo and K.
(ii) The intersection of all the sets {go} is not empty.
Thus, from this nonempty intersection there exists awgkrix P which gives a
Liapunov function for all xo; namely
V=% PX and
Vexp @ (20) B+24 () ) x <O.

Therefore, x = A (x) x is ASL and the Liapunov function used in the analysis

is a CLF of the system x = A (x0) x.
In reference [13 , the authors considered the linear, varying parameter
system
x =A ® x, (89)

where K € K £ K. A(K) is assumed to be linearly dependent upon the parameter K.
We choose the same form for V as in the previous cases xr P x, where

\;(x) = - %X Q x. The Q matrix satisfies equation (85). Since for any symmetric,
positive definite matrix Q there exists a unique solution of (85), then the above

V-function guarantees the asymptotic stability of (89) in a given range for the

parameter K. Since A depends on K, P is also dependent upon K through equation (85).




- 21 -
Defining set Zg} as above, tha CLF for (89) is defined as: "if there exists a

P*  belonging to set {2} such that Q* = - [éT P+ P* é] is positive definite
for all K in the range K<K<XK, then V¥ = gT P* X is aCLFover K £ K< X 7
By using this CLF, nonlinear systems defined by replacing K by K(x) can be studied.
To aid in the discussion, we consider the first and second order examples given

in [iﬂ .

First Order System, ﬁB

The system is described by the equation
X = ax-Kx, (90)

where K is a system parameter. The Liapunov function of the form given by

(73) is
v = p__z (91)
‘Then
6 = 2px [}x-Kg] = 2p (a-kK) x2 = - qx2. (92)

Equation (90) is ASL for K > a and for p > O. A CLF exists if the parameter K
is restricted by the inequalities

| K>K Da. (93)
If we choose

p=K-a, (94)
then V = (K - a) x2 is a CLF for the system in (90) where the parameter K
satisfies (93).
If K is now replaced by a norlinear functiom K(x), we can still use

vV = (Kra)xz , as a CLF, provided K = Min [ K (x):};>a. The time derivative of this
V is

7=2 (ka) (aKx ) x> < 0. (95)
Therefore the nonlinear equation

%= ax- K& x, (96)
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is ASL for K > a. This example shows how a CLF for a linear system can be used

for a nonlinear system.

Second-Order Example 13

Consider the second order example
);l = X2 (97)

Xo= = K (x1) %1 - ax

where K(x7) = b + £(x7). In terms of equation (83),

0 1
A® = , (98)
-K(xl) - a
inttially
where K isTtreated as a parameter and the range of interest is K 2 0. If the
candidate for V is given by V = x P x, then V= - Zr Q x, where
0® - 2 Rpyp Kpyp = P17t @y ’ (99)
Kpyp - P11 + ap12 2 app2 -2 P12
and P]-_j are the elements of P. If there exists a CLF, then there corresponds

a P for Q(0); namely, for

0 a -
plZ p“

Q(0) = apyp - P11 2 (apy - P12) (100)

For Q(0) to be positive semi-definite, we must select apjy = pPyy - Hence,

we have

2 Kpy2 | Kp22
Q) = (101)

Kp22 2 (app2 - P12)
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For positive definiteness of Q(K) it is necessary that
(1) p1p20, apy, -pp >0,
(i1) det QX)) =4q&) > 0,
q(K) = - K Piz + 4Kpy1,  (apyy - Pyo)- (102)
Since q(K) can be negative, as seen by (102))there exists a maximum value of K.

Thus, the maximum is

K=14py, (apyy = Ppyy |, (103)
o2
22

and a CLF exists for all K in the interval 0 £ K € K. (Any matrix P which

satisfies ap), = and (102) is positive definite $f K > 0 and a > O.) 1f

P11

we can choose a CLF for the range 0 < K(X,)SK, then the nonlinear system in (97)

can be proved to be ASL. This choice for V is

V= xq a2 a x (104)

a 2

- 2
where K = a N by (103).

The disadvantage of the above procedure is that for the linear problem corresponding

to (97), K(x1) = constant, there is an upper bound on K, given by (103). This can be
corrected if Pj] in P is written as pj; = ¢ + vK, where ¢ and v are constants. Thus
from Q(0) in (99) and the conditions (102), we have that c¢ = aPy» V = Pyy and

q(X) > 0 for all K > 0. Now, if we further choose = l:pzz = 2] and [P12 = a:l, then

P becomes

a + 2K aT

P = . . (105)

Therefore, Q=Q(K) and P=P(K) are both positive definite for all K > 0. Thus,
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for the linear system, K=constant in (97), the Liapunov function is

V(x)= xp x +2 K

(106)
a 2

= xp Po ox + 2K

3

where Po is a constant matrix independent of K. Equation (106) is a modification

of the CLF in (104) because of the added term 2Kx§.

For nonlinear systems, an idea due to Cartwright is applied, in that the

term 2KX% is replaced by

X1
4 f u K (@) du. (107)

(¢}

Thus, for the nonlinear system in (97) the modified CLF is:

V(x) = xg £g§+4fX1uK(u) d u (108)
o
and
V@ = -x Q) x (109)
where
2aK (x.) 0
Q -
0 2a

This Liapunov function in (108) proves that (97) is ASL if K(X,) > 0.

Generalization

The above results are generalized to a system with several parameters
K;» K greeeees Km' For the linear system, the form of the candidate for the

Liapunov function is

m 2
V(®) = x; Po x +.Z_1'( v; Ky ox; (110)
l=
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where Po is independent of the Kifs and Vi's are constants (i =1, 2,...m, m < n).

)
For nonlinear systems, if K; = K;(x;), the Liapunov function may be modified to

m X5 :
V@ =x Po x + 237 Vi / Ki (o) udu. (111)
i=]

o
The time derivative of V gives identical forms for Q in both (110) and (111).

Since V(x) in (111) can be bounded in the following way

m
2
V(x) > x Pox + 27 ViKi*xj, (112)
i=1
where

wx (ki x1)| . vi <0

xi

MIN [1(1 (xi_)] , Vi > 0

x1i

then V(x) in (111) is positive ( //5 ” 7& 0) if V(x) in (110) is positive for

all K; such that

MIN [m (xi)J < Ki < MAX [Ki (xi)J . (114)
xi xi

Summary:
The results of the last few paragraphs may be summarized as follows:
Consider the differential equation x = A x which depends linearly on the

parameters K;, K,...., K. If the solution of the system is stable for

K £ K; é—lg-_, then V = xp P (Ky,...,K)) x is a Liapunov function if P is the

solution of the equation

éT (Kl,.-.,1<m) P +_P_é (Kl"“’Km) = - g (Kl,...Km) . (115)

If é“g_'> 0’ can be selected such that P is independent of the Ki's, V(x) = b
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is a CLF in the range K; < K; < _K—i and, consequently, for the nonlinear system where
K; =K (® . (The trouble is that such CLF's are not easy to get:) If the nonlinear
system is such that K; = K; (x;), then a Liapunov function of the form given in

(111) can be obtained. This Liapunov function is greater than zero ( [/ x Il 94 0)

if Mﬁ? [;Ki(xiZJ = Ki and Mi? [jKi(xi)_] = gi)as can be seen from (112) and

(113). Thus, the method considered by the authors in the above discussion is one

in which the nonlinear problem is related to the corresponding linear problem foxr

which the stability conditions are known.
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COMPENDIUM OF EXAMPLES .

The following set of examples were taken from the paper of Schultz and

Gibson, |—_1] 7.

(1) Second Order System

Xy =x2,

X, =-Xx X
2

The gradient is assumed to be

C><11 C’(12 X1
Vv = ,
0(21 2 X2
where the 's are constants or functions of x. The time derivative becomes
A ‘:}\, ]
. =1 21 X2 \
vV = [xl’ X 2_]
=12 2 xy-X3

°<.21Xr+"("(12 -2) x g + e -X21 - 2x‘Z' ) x%,.

We now let (°(11 -°(21 - ZX% ) = 0,°(12 =1 and°(21> 0. Thus,

V< o0 if I X |/ ¥ 0. And, the gradient becomes

2
w =

1

=<2 |

X1

X2

The curl equations give the following relationships:

v

! 3
w21 x1+2x1 + %

%l" =o(o1 x1 + 2x2,
X2

v _
Ax1dx2

3

|l
[}
-

a2y
Ax2dx1 X21




Thus, we let

<
[
%
<3
1=
[= N
1]
]

o

2 4
X1/2 + Xl/z + X1X2

J
v = CADE X = - x% - x? .
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2
+ x2.’

4
/2 Xl

X

[o}

CN{ = 1. The resulting V and V are:
21 &

*1
3
f (Xl + 2x1 ) dxy

2
+ ij,

2
-l:/ (Xl + 2x2) dxsy,

We can see that V is positive definite and V is negative definite. Also, as-

2] — == V—s oo.
stable.

(2) Second Order System

This system is described by

Xl = X2
}.{2 = - X2 - f1X2 -
where f; = f(xq) , £y = df(xl)/dxl
chosen to be
X711 Sy
w =
21 2

The time derivative of V becomes

£ x1xp - x5,

and @ = constant.

X1

X2

The gradient is

Therefore the system is globally asyptotically

°ﬂj. c‘%l

X2

RIS :

-x2

fixp

f

X1%2

-é?x,fl

+ x§ [y - 2]
2

- 2 £ x% - 2x1X) £1'

-+

X1%2 |:°(11 - ofp1 =y xiff - Apifl - 2 é fl] +
: @“zlflx%
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We now let the coefficient of x;x, be zero, &1, = 2, >0 and
f1. > O for all xj. The gradient becomes
°<21(1 + £, + lel') + 2 @ £, 2
v—v =
=21 2
Applying the curl equations to VYV gives
Yoo
—BX]_ 'ax2 - ?
P S

Then, if 0(21 = 2 , the resulting V and V functions are

X
1 /’“2
2
L L

vV =
] O
X1
- 2 2 '
= x] + 2xlx2 + x5 + 2 A X .fl + xlfl
X1
+ 2 Qf x1f (x1) dxp,
o
7 = ( ) > = 1 2 2
The V-function —s o0 as // §/ —_— oo and

system is globally asymptotically stable when
£, + xlfl' = f(xl) + xlf'(X]_) = 0,

f1

g >o.

f(x1) > O,

i

(3) A General Second Order Equation

This system is given by

X + a(x,x) x + bx) x = 0,

X1

*2

dxl +

the
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where a and b are such that a unique solution exist for given initial values and

= x and Xg = X,

the equilibrium solution is at x = x = 0 . If xg
then the state-variable equations become

X) = X,

X2

- a(xl,xz) Xy = b(x]) % |

As in the previous cases, the gradient is chosen as

11 = 31

W o-

0(21 2 *2

The time derivative of V is

C<i1 C*El

A5 2

l—_°(11 xp + g xp 0y m 2X2J %2

~axg - bxj

= 2 2 2
= [0(11- 30(21 - 2b :I X1x2 +412 X 2 -2 asz - b°(21X1

Let °(11 = 30(21 + 2b , 0(12 = C%2]_ = 0 . Thus,
2b 0 X
wo- .
0 2 X2
and

é! = 2b(x]_) X1,

?¥xy
Q_‘L = 2X2 ,
aXZ
| v =% = o.

Dx1BX2 "AX2AX]
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Therefore the curl equations are satisfied and we have

Xl X2 .

V = 2 f b(xl) xldxl + f 2x2c'.x2’
o o '
X, )

= 2 f b(x1) x1dx3 + x93,
o -
and
. 2
Vo= - 2(x1,%x2) x 2 .

The system is globally asymptotically stable if

b(x;) > 0 for all X,

X
1 .
f b(xl) X1 Xm —p o0 ° a§ X] —» oo,
o .

a(x; x9) 2 0 for all x; and x9_

(4) Third Order System

The equations for the system are

X1 = XZ

;{2 = X3

X, = -3 -2 - 3x2 Xy - x3

3 = 3x3 - 2% 1 % - 8x -

After the usual choice for W , the time derivative V can be written as

d11 | d21 d31 . x]

V= [X1, X2, X_3] d12 d22 d32 X2 ,
d13 d23 2 X3

2 2
=(dyp - d31 - 3d3px - Bdyzx ) x xp 4

, 2
+ (d13 + d22 - 3d32 -4 - 6X1 ) X9 X3 +
2 2
+ (d21 - 3d31 -2 @ Xl ) X1X3 + (d23 "6) X3 +

2 2 .4
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There are a large number of ways to constrain V. The authors initially set

‘132 = 0. To eliminate nonnegative x22 - terms, d12 must be zero. Then,

all terms in V containing x5 are eliminated. This, together with the curl
equations give the following:

d21 =0 > d23 =0 N d12 = 0,

- 2 - - 2
d13 = 6X1 > d22 =4 N d31 = 2X1 )
2 2
dll = 2d31 + 3d31 X1 = 4X1 + 6Xf}

The resulting VYV becomes

5 3 2
6x; + 4x1 + (6x1) X3

VV = 4X2 .

3
2x1 + ZX3

The corresponding V and V are

X
v =f YV.edx = x6 + x4 + 2x2 +(2x3)x + x2,
o 1 1 2 1 3 3
= (x; + x:,;)2 + x; + 2x22 ,
vV = - 2€xf - (2 @ + 6) xf X3 - 6x§ .

Thus, V is negative semi-definite for @ = 3 and V is positive for //5// :,é 0.
Therefore, the system is globally asymptotically stable for 8 = 3.

A better result is obtained if d23 is not zero. Applying a procedure

similar to the above, we have
6 2dp3 +923 8 + 4| , 2d3| ,
vV = x + 2 X1 +| 3 xi +

3 3
+ do3 x1 xp + 2x7 x3 + 2dp3 X1X) +_§_d23 x1x3 *+

+ (/6 43 +2) x5+ dyyxxs + x5
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and
V. =

6 : ' 3
-2 @xl + (2 @8 + 6 -d,;) x1 x3 +

-X§ (6 - da3) - '§' d23 QXf-
Let d23§= 2 (@ -3). Then 6 is negative semi-definite and V is positive
definite for all 0 < @< 3 . The system7i§ globally asymptotically stable
for this range of @'s. |

Another Third Order System

The describing equations of the system are

X] = x2.°
;{2 = X3 s
i3 = - 3xf IX3 - 2%x9 - 6xix§ - xg

. o . ° . * ’
In this case the authors constrain V such that it is a function of Xg . The

form of V which must be simplified is

dpy da1 d3y X}

V= &‘1, X2, Xé] dy d22 d32 X2

dyy - da3 dj3 X3

We start ;he'simplification by letting d31 = 0. From the curl equations

we find that

d23 d3z2 = 6x 12’

ds3p 12 X]1X .

Terms involving (x;

and dp; = 2x§ + 18x7 x ,

if djp = 36 xf X 9 But, it can be shown that the curl equations

2
dictate that djp must actually be djp = 36x% x2 + 6x1 .

4
xz),(xz X3)’and (xl X3) can be eliminated if <L11= 6x; , doyp =4

. The term involving (xf) ( x% ) vanishes



- 34 -

This, G takes the form

4 3 2 .
6x1 18x1 x2 + 2x1{ 0 X1
3 2 2 .
vV = [?1, X2, xﬂ 36x1 - x2 + 6x] 4 6x1 X2 1,
2 .
12x1x9 6xq 2 X3
2 2
=-6x] X2 .

Integrating YV gives

6 2 2 2
V=x + 2xf X9 + 9xf X9 + 2x§ + 6x] X9x3 + X3 ,

2 2 3 2 6
(X3 + 3X1 x2) + 2 (x2 + x1/2) + xq /2°

Therefore, V is negative semi-definite, V is positive definite and V—> ©°
as // X // —» oo - The system is then globally ‘asymptotically stable.

The next set of examples were obtained from Schultz's paper, reference [5] .

In this paper Schultz discusses the generalized Routh-Hurwitz conditions for

nonlinear systems of the form

0D B a, (x, ey e, x(n-l)) x -1 + ... +a (%, x(l) yeens x(n-l) ) x=0,

1

where the equilibrium state is taken as x = X = f.. = x(n-l) = 0. The

th . . . .
n— order equation can be written in matrix form:

i = A X x ,
0 1 .. 0 |
0 0 , 0
A = : -
0 0 i 1
-a) a9 ... -an

= x(n-l}.

]

ai = ai (%), xg¢ X, ..o, Xn
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The author considers 2nd and 3rd order cases; thus, the gradients of V used in

this paper take the forms

di1 (x1) d12 (x1) X1
w o= ’
d21(x1) d22 (x2) x2
and
d11 (x1) di2(x1, x2)|d13 (x1,%2) X1
W o= | da(xp, x9) dga(x3) da3(xy, %3) X2
dy(xq x5) d3p(xy %) | d33(x3) X3
General Second Order System
The system is described by
X + A (x,%x) x + Bi(x) Ba(X) x = O,
or
3 0 1 x]
Xy -By B, -A X9
The time derivative of V becomes
Vo= Wy x
= () - Ady; - dpy BiBy) xpxp 4
2 2 2
+ djp x3 - dyp Axy — ByBp dy) x3

Since djp and djp) are functions of xj, it is convenient to set them equal'
. .
to zero in the expression for V. Also the (x] x7) term is eliminated in V if

To satisfy this equation and the form of VYV

Bi(x1) 1 /B2(x2).

di1 = d22 B1B2 - .

originally proposed, we choose dip = and d22 =
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Thus,

By 0 X1

w = ;
0 1/B2 X2
) *
where }ZV/ax]_AXZ = BZV/3x23x1 =- 0 . The resulting V and V are
X1 X2
vV = B1(x1) x1 dx1 - + X2d4 X2 ,
: 5200

and

V=-|_ A (%1, X2) 2
|: By (x2) sz :

For global asymptotic stability of the given system the following conditions
care suffeecent:
1) the non-null solutions of \.7 = 0 must not be solutions of X = A Xx;
2) Vo—e oo as//g/ — e oo
3) A (x1, x2) 2 0 for all x; and x3 ,
B1 (x3) > 0 for all x3 ,
By (x2) > 0 for all xy .

The conditions under (3) are the same as the Routh-Hurwitz conditions for a

linear system.

We now consider a third order, nonlinear system defined by

x + AX + Bx + Cx = o0,
or
X1 0 1 0 X1
)'{2 = 0] 0 1 X2 .
>’¢3 -C -B -A Xq
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The expression for V is given by

V = @ x

= (dll - Bd31 "Cd32 ) x1x2 + (d13 + dzz - d32A - 2B) X2X3 +

+ (d.zl - Ad31 - 26)- XIX3 - d31 G Xlz +
+ (d12 - Bd32 ) x% — (ZA - d23) X32 ,
where d33 = 2. Below, we consider several special cases of this third

order example.

(7) A & B constants; C = C(Xl) (Ingwerson)

The coefficients of X1X9, XpX3 and xi in 6 are set equal to zero:
djy - B d31' - Gy = 0,
dyy +dyy = d3pA - 2B = 0,
dyp - Bdjy = 0.

Let d12; d21"d31 and d;3 be constants. The curl equations will then

impose symmetry; namely, dyjp = dp; and d3; = dj3. For convenience, we
let d32 = dp3 = A. Thus, we have

d32 = A, d3; = dj3 =3B, djp = dy; = AB,

dpp = A% +3 ,4, = B + ac

The resulting V and V are

vV =- BC(x,) x% - 2C(x1) X|X3 - Axg
BC 0 C
= - Xp 0 0 0 X,
c i 0 A
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vV = EVodﬁ

o

X 2 2
A C d B x1 - 2
[ e en +ep]s L ][] 7

(o}

+ B x3x3 + Axpxz + xg .
Thus, the conditions for global asymptotic stability are
A > 0
B > 0
C(x;) > 0, for all x;,
AB - C (x1) > 0, for all x.
These conditions are analogous to the Routh-Hurwitz conditions for linear systems.

(8) A, C constants; B = B(x2)

This example is analyzed in the same way as example (7). Thus, we will only

give the V-function, V, and the stability requirements. \7 and V are

Vo= -2x [AB(xz) -c:I ,

and
2 2
vV = ACX% + 2CX1X2 + A X 2 + 2AX2X3 + X32 +

X2
+ Z/ B(x2) XpdXp.

o)

The stability requirements are again the generalized Routh-Hurwitz conditions:
A >0,
B(xp) > 0, for all X2,
c > 0,

AB(x2) — C > 0, for all x3.
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(9) B and C are constants; A = A(xz) (LaSalle)

This example is also very similar to (7) and_(8) and thus, only V, and V,

and the stability requirements are given. V and V are
2C
vV = CZ/B Xlz + ZCXIXZ + BX% +| B X9X3 + X% +

2€ % '
+ B f A(xp) x 2‘dxz,
(o]

and

Vo=- 2x§/B (A(x2) B - C) .

Once again the stébility conditions are the generalized Routh-Hurwitz conditions:
A(x9) > 0 , for all X9,
B >0,

¢c >0,

One of the most general third order cases considered by Schultz was
Barbashin's problem:
X + AX + B(x) x + €(x) x = 0.
By a procedure similar to example (7) we obtain the following V and V:
IO S 2 2
V = 2A f C(xl) x1 dx;  +20(x1) x1x0 +A%x2 +
o

2

A(x2) B-C >0, for all x,.
(10) A = constant, B = B(x), C = C(x) (Barbashin)
x
' + 2 sz(xz) x2d X2 +2szx3 +x3
o .



and

. ‘dC('x‘l)
V=- 2x22 [AB(xz) - C(xl):l + 2x§ [ dxy jl X1

The resulting stability conditions are
(1) A > o0,
B(xp) > 0 , for all xj,
C(x3) > 0, for all xj,

AB(x2) - c(x1) > 0, for all x) and x2,

() dl(xy) o

X1 0.

dxq
The conditions under (1) are the generalized Routh-Hurwitz conditions, and

(2) represents a saturating type of nonlinearity found in control systems.

(11) Third Order System

The following equations describe a motor compensated with tachometer feedbacks:

X] = X9
"‘2 = X3
df (x1)
X3 = - @ g(xl) xl - N + dx1 X2 - MX3-
where
£(x1) = x18(x1).

This stability problem is more difficult than the previous problems. We
must consider the J_'s to be made up of a constant term and a variable term.
We assume a33 equals 2. Thus, V becomes

Vo= xxp(dyy - dyN - dyf] - d3; Bgy) 4
+ xpx3 (d13 + dog - 332 M - 2N -Z'fl') +
2

+ x1x3(d21 - d31 M -~ 2@g1) — d31 gix1 +

2 2
+ x2 (d12 - d32 N - d3pf1') + x3 (d23 - 2M),
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where f1' = df(x]_)/dx'l and g = g(x1) . We now simplify ‘.l.
First, cancel-out the @-dependent term in the coefficient of X Xy by a
proper choice of c'.“_ . This leads to the result that {7 is easily constrained in

terms of x; and x3; therefore, make the X9 terms vanish. Then, the curl equations

are applied. The results of these manipulations are

dg3 =d3p =2 M-p ,

d22 = d23 (M - N/M) + 2N )
dp; =dp3 (N + gy,
d12 v= d23 (N + fl') N

d3; =dp3 N/M + 2g

v far 1]

1 nr
/M- ziy

[o
[t
w

I

c.
N
w

=

dj; =d3; (N + £9') + dy3 8 g1 ;

-
therefore, V becomes

v ={'2@g§'><f - xqX38; [2@+2M -d23J - x5 [ZM -d23]

+[— dzsr«] 8 &1 xlz

M

If the following substitutions are made in the z } - term

C{23 = 2 M -@) ,
xg = F1,
X3 = & 3 s
then \.I becomes
V=-2 @(21+Z3) - M g1X] -

Thus, V is negative semi-definite if we demand that
N >0, M >0,
0 < g €M,

g(x1) > 0, for all xj.
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Also, we assume that V = 0 has no non-null solutions. By line integration, V is

determined . to be . .

X1 d 23N X1
V = (N + dy3 B8) f g afy + [ m erdpd afh +
2 ° do3n2x12 °
+ [%(X1) x{] + 2M + dp3 Nxyxp + dp3s(xy) x1%p +

+ d23M+2N-d23N x% +]d 23 N|x1x3 +
M /2 M

+ 2 g(x1) =x1x3 + do3 xox3 + xg .
The conclusions obtained from this very complicated V-function are summarized by
Schultz. The class of functions for which his conclusions are valid is defined
as the set of continuous nonlinear functions with positive slopes and which lie
in the first and third quadrants of the x;y - plane. Thus, V is shown to
be positive definite by Ingwerson's method. Therefore, our system is globally
asymptotically stable whenever V-—s» o0 as //5//___, oo -

From Geiss' Report, [7] , we consider Duffing's equation as analyzed by

the variable gradient method.

(12) Duffing's Equation

The defining equations are

Xl = X2 :’ .
. 3
x2 = = X]_ - bxl ) b > 0 .

The choice for YV is given by

ajp t+ dyp(xp) ajp + dya(xy) 3]

321 + d21(X1) . 2 X2
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where ajj;, ajp and aj) are constants. From VV and the defining equations,

L]
V becomes

. . 2
V.= @px = (a1 + d13) xpxp + (agp + dyp) xp +
2
- (a21 + d21) X] = 2X1X9 +
- b (321 + dzi) x‘f - 2b X% X9 .
Thus, \.7 is negative definite if a;; =2, dy; = 2b x2 y dyp = dgp = 0,
and aj2 < 0. The curl equation gives
3% Ay
— = = = O .
“ax) 9x2 axdx] 212 a21 <
Let ajp = ag; = - X , wWwhere X) 0 . Therefore,

V and \.f become

\' =|_l)22'L + x12 —_— Xxlxz + x% s

and

It

. 2 2 4

v -XE{z-xl -bx1:].

V is positive definite if 0 € ¥< 2 . V is indefinite unless & = 0.
When X= 0 , V is positive definite and ‘.7 is identically zero, In fact,

since V = 0, V = constant is a trajectory of the system. The system is stable in

the neighborhood of the null solution, but not asymptotically stable.

We now consider some examples analyzed by Puri's "shorthand'" method for
the variable gradient technique. One example will be a generalization of Barbashin's
problem, [8] . The other examples will be the same ones as considered by Schultz

and Gibson in [1] .

The system is described by

X1 = X2,

. 3
=-x1 - X

bl
N
|

I (13) Second Order System
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or
}.{1 ~ 0 1 Xl
L ] 2
X9 -X] -1 X9

We assume a symmetric form for the square matrix in VV

G11 G12 X1
W = = G x .
The time derivative of V is
v o= W)rx = x7(Gr A x = 27T x,
2
- G12x1 G11 - Gi12
- §T > X >
- X1 Gip -1
2 2
-G12x1 G11 - G2 - x1
0 Gio -1
2 . 2 . .
Let Gyjp = 0 and Gy} = x; . Then V= — x5 . The gradient is
2 _ 3
X1 0 X1 X1
w - - ’
0 1 X2 X2
where BZV = BZV = 0 . By line integration
BX10X9y DXIBX]
73 2
v = x1/4 + x2/2
Thus, V is positive definites \.7 is negative semi-definite; V — o0 as

”5” — o0 and V=0 1is satisfied only by the null solution.

Therefore, the system is globally asymptotically stable.
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(14) A General Second Order System

The system is described by
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X] = X2,
iz =
or
0 1
. =
X =
-b -a

The choice for YW 1is the same as in the previous example;

=-b (xl) X; - a(xl,xz) Xy

thus V becomes

. G11 G12 0 1 X1
vV = [Xl’ Xﬂ
G12 1 -b -a X2
’ -bGy 2 G11 - aGypp
= X7 X
- b Glz - a
-b Gi2 Gi1 - aGrz2 - b
= X _x_ 3
=t 0 G12 « a
Let Gy = 0 and Gy; = b. Therefore, YV becomes:
b 0 X1
yv = 5
0 1 Xz
where 3V73x1 =b(x1) x1 and XVVBXZ = x2 . The curl equation
is easily checked:
3y &,
-DXfBXZ 14 ¢

By line integration of YV we get

X1

-2
x1b(x1) dx; + x2/2 ,
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. 2
where V = - a xp . The system is globally asymptotically stable if

b (x1) > 0 for all xq,

X1
f b(x1) x; dx] —— o0 as x) —b ©9,

(o}

a(xy, x2) > O for all xj and xj.

(15) A General Third Order System

This system comes from Puri's work in reference [S] . The equation is
X o+ £3(¥) + £ + f1(x) = O.
The matrix formulation, where x; = x, xp = % and X3 ==3;, is given by
X1 0 1 0 x]
Xp | = 0 0 1 X9 .
X3 -f1/Xl —f2/X2 -f3/x3 X3

The equilibrium solution is assumed to occur at x = 0. The form of YV is

assumed to be

G11 G12 G13
W = Gi2 G22 G23 x = G x
G13 G23 1

Since in G there exists five unknown functions of x, we need five equations

[
involving the Gij’s. These relationships are obtained from V as follows:

Vo= (EY)T x = Xp Gr A X,
-G13 f1/x1 Gll - G13 f2/x2 Gl2 - G13 £3/x3
= xp | -G23 £1/x1 Gl2 - G23 f£f2/x2 G22 - G23 £3/x3 X ,
-f1/x1 Gl3 - f2/x2 G23 - £3/x3
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-G13 f1/x1 Gll - G13 f2/x2 -~ G23 fl/x1 Gl2 - G13 £3/x3 - f1/x1
0 Gl2 - G23 £2/x2 G22 - G23 £3/x3 + G13 - £2/x2
0 0 G23 - £3/x3

Let all the elements in the above triangular matrix be zero except the second

£3x3/x3

row, second column element. Thus, we get the following results:
Gz = 0 , Gpp = fl(x]_)/ X1 >
Gz = f3(x3) /x3 | Gy3 = £1(x)) f3(X3)//X1X3’
2
G2 = fa(x2)/ x2 + [%3(x3) / x3;] .
Since YV = G x, we have
v
'BX]_ = flfa/X3 + flx%/xl’
N~
oV 2
QRdxy = f1 + f2 4+ xpf3 /x3  +
Y4
Bxy = xof3/x3 + x5,

We now see one of the disadvantages of assuming a symmetric G matrix when we

attempt to check the curl equations. The curl equations

produce the following:

2
Ny W gives £1/x1 = dfl
3)(13){2 BXZBX:L dxl
A% _ gives £1 d (£3/x3)
“Ax;0x “ax.8x dx = 0,
18%3 38%] 3
2
a2y a2y gives d(£3/x3)"  , d(£3/x3"3) _ £3,
3 .
Ax8x3 Ax3ax2 dx3 dx3

One way in which these curl equations could be satisfied is to replace £3/x3

by a constant; namely,

[]

o = Lim 0 (£3 /x3) , and to let Gy, equal
—

X
dfl/dxl . Our new G is no 1onger35ymmetric, but is
A£f1/x1 f1'! 0
-| f1/x 0% + f£2/x2 ™
0 4 1

E
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resulting in the following expressions for the components of YV ,

¥1=[o<f1 + £ xzj,

3Y=L 2
Bx?_ f1 + fg + X xy + O(X:{\,

W 1
}X3 [O(xz + XBJ’

and V and V become

(xl’0,0)P_\_j] dxy + (xl’xz,O)[&] ] dx, + (Xl,XZ,XB)[deX:a ’

<
n

3)(1 axp ax3
(0’010) (X]_’0,0) (Xl’xz’O)
X 2 <
= O( fl(Xl) dxl + X2 fl(xl) +f fz(XZ) dX2 + 2 (X 2) +
o o
2
+ Xx2x3 + x3/2
> x]_ x2
= 1 @2+ X3)2 + f1(x) x2 + X £1(x1) dx1 + f fa(xp) dxg,
2 o o
and
‘} = (v_‘DT x -
5 -
= - ["(J‘_Z/X2 - fl':l x% + 2 [2 (f3/x3 —O()J xox3 + E3/x3 - °<J X32
O(fZ/XZ - 5 %{ (f3/x3 -X) X9
= - [r.xd
L ?2_< (f3/X3 - D() f3/x3 - 0( X3

Therefore, a set of sufficient conditions for a global asymptotically stable
system is as follows:

X >0, f£1(x1) x3 > 0, £ (x9) xp > 0,

d £1(x1)
=4 fz(xz)/xz - dxq >0,
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2
4 [O(fiz(xz) - dflgan >/0< 'f3gxsz - oﬂ > o,
X9 x1 X3
X3 X2
1/2 (C>(x2 + x3)2 + °</; fl(xl) dx1 + fo f2(x2) dx2 > fl(xl)- Xy
and

f1, f3, £3 are such that V—» oOag X “——bco
Barabashin's problem is a special case of the above if we let f3/x3> = &

in the equation describing the system. The corresponding V and \.7 are

J— [O< f2/x2 - f]_' J X

. 2
v 3

]

b
X1

1/2 (o(xz +x3)2 + fl(xl) Xy -+°(f fl(xl)dxl +

‘0
*2
+ f2 (Xz) dXz.

2]

<3
]
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The stability requirements reduce to
o« >0, £1(x1) x3 > 0 , f2(x9) xp > O,
X f2lxp)y - £ 2> 0,
%2

X]
1/2 @y +x3)° + f £1(x1) dx; +/ f2(xp) dx3 2> /fl(X1)x2/
(o] (o]

Also, the third order linear system is a special case of the above problem.

Let f3 = a3 x3 = € x3 ,f2 = ap xp and f; = a; x; , where the a's are all

L ]
constants. Thus, V and V are

‘.7 = - l:az 33 - a]_] X% ’
, 1&;] 2+ [8_2] 2
1/2 (a3xy + x3)2 + apxyxy +p 2 Ux) 2 | x2 .

The stability conditions are

! \Y

aj >0, a > 0,a3 > 0,

azay - a1 > 0,
which correspond to the Routh-Hurwitz conditions.

The next set of examples comes from Ku and Puri's work which is reported in

references[Q] and [l(j .

(16) Simanov's Third-Order System, Eol

The nonlinear differential equation is

“ + £ (x, x) X + b x + cx =0,

where b and c are constants. For the state variables x; = x, xp = ;c and
X3 = X , we have
0 1 0
| x = A ® x = |0 0 1 x
-c -b -f(xl,xz)
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The form of the § matrix for this system with one nonlinearity is
K11 K12 K13
2
28 = K12 Koo + Y(xy,xp)/x K3 |
K13 K23 K33

where the Kj_j's are constants. The candidate for V is V = Xp S x. The

gradient of V becomes

Kjpg + _1 &y Ki2 K13
2x, §x'
W = 3B x = K K + 1 ay K X.
12 22 Ty 85 23 X
K13 K23 K33

Thus, the time derivative of V yields

V = ZpBrA x = %I x =
-CK13 K11 + 2x1 ¥xy Kip - fKj3
= X -CKy3 Kjp - bKy3 Kyp +_L Y - f Ryl x
2x2 ‘3x2
-CK33 Ky3 - bKj3 Ko3 - fKj33

For T3 + T3; =0, Ky3 =0 and Ki5 = cK33. For the constant parts of Tyg + Tyy
to be zero we require that K33 = 0 and Kj] = cKp3 . Let Tpgbe zero; thus

bKy3 = K. Let the constant parts of T93 + T3y be zero; therefore Kj3 = O and
bK33. Choose K33 to be b2. The remaining constants are Kgpjp = b3, K23 = bc,

b2c, Kij1 = bc2. Let the variable parts in T3 be zero, thus

K22

Ki2

3

aY/éxz = 2bc f(xl, X2) X2

X2
Y = 2bc f f(xl,xz)ﬂ x9dxy.
o



Therefore, it follows that

}Y/axl
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X2
2 be ‘j‘ }fg§1,3§22 x2dx2.
(o] —3X1

L)
The resulting matrix T in V becomes

]

The final expression for vV is j

<la

Substituting the K]-_J.'s and Y

2V

where

The system is asymptotically

2b

X9 )
f
0 be/x, f L /AX]] x,dx, 0

= 0 0 0

0 0 -b2 (f - ¢/b)

2 af
= - b2 [f(xl’xz) - c/b:‘ x3 + bexp \f {‘dxl x2dx2.
o

into S we get our V - function:

= b (cx1 + bx2)2 + (cxp + bx3)2 + J (gl’xz),

J(xl’XZ) = Y (xl,xz) - szzz.

stability if we require

X)
2
f f(xl’XZ) X2dX2 >CX2 s b > 0 )
o

f(xl,xz) > c/b

%2
2
|:b £ (x1,x2) - CJ X3 > cX2 / [%f_jl xodx9,
*1

(o}

J (% Xp) —> ©0 as “5_“——_> o

and V = 0 only for the null solution.
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Cartwright's Fourth Order Example (9]
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[;% As - f'] x2 + 24,

1
' The system is described by
‘ X+ a4x + a3x + aéi + f(x) = 0,
I or
b 0 1 0 0
0 0 1 0
x = X .
0 0 0 1
| -£(x31) -ag -aj3 ~ay
X1
| The § matrix which the authors choose is
, Y(X1) £12(*1) £13(*1)
| Kil +  x12 Kiz +| 21 | | K13+ =1 K14
f12(x1) '
K12 + “2xg K22 - 2 £'(xp) K23 K24
S = s
- f13(x
K13 + 2x; K23 K33 K34
K14 K24 K34 K44
where Kij's are constants., The T matrix is formed as before and gﬁé results
’ are
_ K1y = 0, Kpp = 1/2 (843a3 + apay), A3 = a3 - ar/a,,
K33 = 1/2 (aZ + a2/a4) K44 = 1/2 ,
F K12 = 0, K13 = K14 = 0, K24 = 1/2 A 3,
Koz = 1/2 aza;, , K34 = 1/2 ay
ay
| f12 = af, f13 = £, dx; = A3f .
Thus, V becomes
2 a a4
2V = (x4 + agx3y + A3x2) +a; (x3 + agxy + ay f(xl)

X1
2
f f(x1) dx; a4 £ (xp).
a
2

o
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The time derivative of V is

. 2
V=- [(a3 - a2/34) az - asf' + f"]z X2 ] X2

We have an asymptotically stable system if we require the following:
”az > 0, ajg > 0, ay, > 0, A3 > 0,
[A3 az - a4f' + (f” /2) X9 >0,

a2/a,83 - £ > o,

X1
ZAsf ) dxp - %4y ) > 0,
o 2

and (f) is such that V ——» o0 as //5”__, oo .

(18) Ku's Fourth Order Example _ ﬁd

The nonlinear differential equation is given by

oo 0

x+a.;<'+f(x,;:).x.+c>'c+dx=0,

or in state variable notation:

0 1 0 0
0 0 1 0
x = x = A x ,
0 0 0] 1
-d -C -f(Xl’Xz) -a
where x; = X, Xp = X, X3 = X, X4= k" . The S matrix in V = xp § x is
chosen such that the B matrix inYV =B x has the following form:
K;; + 1 &Y K12 K13 + X3 A | kg
le -axl !xl
K12 K22 + _1 oY | K23 + x3 ¥ | ko4
B = 2x2 8% 2 "ax2
K13 K23 kK33 + K34
Ki4 K24 K34 Kag
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where Y = Y (xl,xz) s ), = 3/ (xl,xz)

and the Kj 1] 's are constants. The time derivative of V is given by

V=% Bp A x=23xp I, x, where the elements of I, are chosen such that T, is

negative semi-definite. The resulting relationships for the KlJ s and the
unknown functions are:
Kgg, =1, K34 =a, Ko = ad, Ky = 0,
Kij3 =d, Kg94 = ad/c, Ki1 = adz/c,
Kp3 = 2 =
23 =c¢ + a“d/c, Kyp = ac - d,
K33 = a2 - ad/c, X = f(xl, Xz),
¥}
g = 2 ad/c £ (x1,x2) x2,
n2
Y = 2 ad/c A £ (x1,x2) x24x2.
A simplified equivalent T matrix is
X2
ad of
ad == X9 dxp
0 cx, “axy 0
0
0 0 0
T = \
X3 0, & a’d | %3 9f
0 T2 ¥xy -af + ¢ + ¢ t3 ¥y
0 0 0

and the corresponding time derivative is

. of
v =» 321‘ I X = _,;g.é‘f - Cc - azd/c - 1/2 [axl X2 + éf X%]]
U/FZ
+ ad/ Qg Xo dXs.
ad/c X2 o [EBXJ 2 9%2
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The V-function is given as
2

ad 2 ad
2V=c/a[/c x1+ax2+x3} + /c x2+ax3+x4:l+

2
o ad 2 a~d 2
+ [f - c¢/a - /c:l x 3 + l:ZaY - d/c (c + /c) x2:|

Asymptotic stability of the system will be guaranteed if

pr; A
af - ¢ - azd/c - 1/2@3;1)x2 +(}_}.{.2)x3 > € Z o0,

2
= ad/ (x2/x§) f <3_x-1) X9 dxy ,
o

f -c/a - ad/c > 0,

m
fl

2
Y -d/e (¢ + azd/c) x2 > 0
and f is such that V —» o0 as ”_}g” — oo.

The next several examples are from the Ph, D. thesis of Mekel, [].ﬂ .

There are second order, third order and fourth order examples. Some of the
systems are the same as considered before but Mekel's Liapunov functions

and stability conditions are different. Because the method of Ku, Puri and
Mekel has been discussed in detail in the text of this section as well as
in the examples, only the salient points of the following examples will

be given.

(19)'x'+a2 x + f(x) = 0, ap ¥ constant

The matrix form of the equation is

0 1
i{_ = | -£(x1) -ag X , X = X] x = X2 .
X]
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The Liapunov function and the corresponding time derivative are

2
\' = _xT § § = -}-ST 1 ?_{
0 1
and
0 0
[
Vs oz Ixo=ox x
0 -an
X1
where F (x1) = Jf f (x1) dx; . The resulting conditions for asymptotic
o
stability are
ag > 0, x3 f(x3) » 0 if =x3 ;
F(x]) —» =0 if 'xll —— SO .
(20) X + g(x) X + a; x = 0 , a; = constant

The matrix form of the equation is

(==

0

I
]
I%
"
[}
X
'—l

We
]
b
N

-a] ~g(x1)

The Liapunov function and the time derivative are

al 0
V = % 8 2 = X x5
0 1
and
0 0
Tex Ix =2 x x
0 -g(x7)
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The resulting conditions for asymptotic stability are a; > 0 and g(xy) > 0
for all xj.

1) X+ g(x) x+f(x) =0

The matrix equation is

0 1
[ ] .
X = X3 X = X1, X = X2 .
-£(x1) -g(x1)
X1

The Liapunov function and the time derivative are

2F(x71) 0
V = % 8 X = X, 2

X >
x1l =
0 1
0 0
‘7=5T I x = 2% X,
0 -g(x1)
X1
where F(Xl) = f f(xl) dxl . The resulting conditions for asymptotic
o
stability are
g(x1) > 0,

x1£(x1) > 0, x 9‘: 0,

F(x1])—» o0 as

(22) ¥'+ 8, X+ g (x,x) Xx+gx +£fx = 0

| — ==

This fourth order system can be expressed in matrix form as

0 1 0 0
0 0 1 0
[ ]
x = X >
0 0 0 1
-f(x1)/x1 ~g(x2)/x2 - %(x]_’xz) -ay




A - PTE T I N T TS I G O W S - — T —— we— —

- 59 -
where x; = x, X9 = }‘(, X3 = 32, X4 = ‘X  and as 1is a constant. 1In the following
S matrix the Kij 's are constants, Y} =Y} (x1), Yo =Y, (x9), £1 = £7(x1 ),
£ = £2(xp), g1 = £1(x) f1 = 7‘1(’*1;‘2) and Y = Y(xp,%))

[ Yy + Y
K11 + <1 Kip + fif=x; Kij3 + falxg Ki4
Y2 + Y
s - Kiz + £ K22 + .5 |Kes + &i/x2 | K24
Ki3 + f2, K23 + 81, K33 +f{1 K34
Xl X2
K14 Ko4 K34 L

The time derivative V = Xp T x is now formed and the unknown constants and
functions in S are determined by making T negative semi-definite. The
resulting T is
Py
0 (l/xl ) "5?{) 0 0
2 (8
0 'a24( /X2>+(a+’:~f‘) 0 0
..'1_‘ = . 3 ]
- . - ' - -
0 0 a+~.-¢ g % ¢ a+. 0
0 0 0 0
and the corresponding S matrix becomes
1 2
=92 12a7 F(x,) + a £(x1)/x1 £(x1)/x1 0
%) 4 1 4
L 2
ay, £(x1) /% X [2a4G(x2) +Y a‘F + g(xz)/xz ay
8 = 3
f(Xl)/xl a4 + g(xZ)/Xz }ﬁ ay
2
0 a 4 a4 1

where f

= df(x), g'= dg(xp), # =

dx]_

dX2

¢ (x1,%x2), Y = / [:3.4 75 (x1, %xp) =

; X, Xy
f (xl)] x2 dxo, G(x2) = / g(x2) dx2 and F(x1) = / f(x1) dxp .
o o
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The corresponding Liapunov function and the time derivative are

<
fl

Zai F(x1) + 2 a4 £(x1) xp + 2 £(x1) x3 + 2a; G(x2)

2x3 g(xp) + ;5 (x1,%9) xg + 2a Z Xox3y + ZaZ Xoxy +
X2
2 '
234X3X4 + 2 [34 %(Xl,XZ) - f (Xl)J dexz,

+

+

and

<3
]

- 23.4 [a4g(x2)/x2 —_— fl(xl):I X% +

-2 l:a4 ,¢(X1,Xz) - g'(x2) - 1/2 ¢ (x1,x%2) - az J x% +
X2

PR CR
+ 2x4 A ai X —£" (%) x2¢lx2.

Thus, the conditions which give asymptotic stability are

a, > 0, g(xz)/xz > 0, [}48(X2)/X2 = f'(xl)J > 0,

20 Flap -0 -2 £ - 2] > o

X2 )%
2 S " <
X9 [a4 “ax, 3 (xl);l x,dx, < 0
o

x; £(x;) > 0, xy8(xp) > 0, ¢(x1’x2) > 0,
[a4 F(xq) + xzf(xl) + G(xz)] > 0,

[t + e8] =3 2 0,
and

aZ %(xl,xz) - f'(xl) > 0.
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(23) X + ajx + ay® + £(x) = 0
The matrix form of the equation is
0 1 0
é = 0 0 1 _}_{_,x=x1,}2 = x2~,Q.x.=
-f(xl) -as -aj
X1
The corresponding Liapunov function is
2a3 F(x1) f(xl)/ 0
z *1
x1
V=%X8 X =Zxg f(xl)/ a, + a% as
X
1
0 a3 1]
or
X1
V=2 f(xq) dxq + 2f + . + xq)?
= 2ag (%)) dxg (x)) %) ag Xg (agx; x3)",
o
and
0 0 0
V=§TI_}E=2§T 0 '[3.23.3‘f' (Xl)_] 0
0 0 0
or 1
. 2
= - - £ =
V =-2 [a2a3 f (Xl):l X, , where F(xl) f(xl)dxl.
o

The equilibrium solution is asymptotically stable if

a, > 0, ag > 0, lajay - f'(xlﬂ > 0,

*1
(o]
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and V satisfies the proper closedness properties.

(24) % + a332 + h(x)x + ax = 0,

The corresponding matrix equation is

0 1 0
X = 0 0 1 X X =X, X =X, X3 = X
-ay -h(xp) -aj
The corresponding Liapunov function is
ajag a; 0
V = %8 2 = X% a; h(xi) + a% ag X,
0 3.3 1
or
V=a (Ja, x; + x,/ [ )2 + |h(x,) - al/a X2+ (a,x, + x )2
1 3 1 2 3 1 3 2 372 37
and 0 0 0
J = - - - 1
V=2x, |0 ERICHIEERER R N EN 0 X,
0 0 0
or E

v

-2 fag hGxp) - & - 2R x| x5 .
The equilibrium solution is asymptotically stable if

a; » 0, a3 > 0, a3 h(x ) - a3 - 1/2 xz;h'(xl) > 0,
and V satisfies the proper closedness properties.

(25) ¥+ azX + g(x) + ajx = 0

The matrix form of the equation is

0 1 0

0 1 X, X] = X, X9 = i, X3 = X.

(B
]
(]

‘al 'g(XZ)/Xz '33
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‘ The corresponding Liapunov function is

' a1a3 a]_ 0
_ s _ 2 G(x2) 2
i V=25 x =% a; xé + a3 ag X,
0 a3 1
i or
| X
) 2 2 rg(x2) _ a )
V = aj (\/_;5 x] + X2/ ﬁi) + (a3X2 +X3) + 2 L X2 aSJXz :de
% o
where
X2
G(xy) = [‘ g(xp) dxsy ,
J
o
! and
' 0 0 0
\ »
' V=2 x 0 'Elsg("z”xz - aljj 0 x,
\
0 0 0

I or
, 6 -2 |a.g(x,)/%, - a x2
l 38 2/2 1 2 °

The conditions for asymptotic stability are

a, > 0, [a3g(x2)/x2 = 3.1] >0, aj > 0,
and the closedness of V.

(26) °X + az¥X + g(x) + f(x) = 0

The matrix form of the equation is

0 1 0

XY
[}

~£(x1) /% | -8(x2) /%, -a3

l v 0 0 1 X, X] = X, X9 = X, X3 = X.
b)
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The corresponding Liapunov function is

2a3 F(xl)/x% f(xl)/xl 0
VexpS x = % | £(x)/x 2G(x2)/x§ + a? a3 x,
0 as 1
or
A1 X2
V=2a3f f(xy)dxy + 2£(xy) % + 2 / g(xy) dxp + (azx2 + X3)2,
o o
where
X1 X2
F(x1) = f(x1) dx; , G(x1) = / g(xp) dxy,
o o
and
0] 0 0
Vex I x = 2 x 0 |-fassleprin, - £6e) | 0 %
0 0 0
or

\

2
-2 33 g(x2)/X2 - f'(xl)] Xz .
The stability conditions are
a3 > 0, [a3g(x2)/x2 - £ (xl)] > 0,

X X

1 2
as f f(xl) dxl + f(Xl) Xo + / g(xz) dx2 Y O.

o o




(27) K + a¥ + g (%) + £(x)

0.

The matrix form of the equation is

- 65 -

0 1 0
é= 0 0 1 X, X] = X, X9 = X, X3 = 3
- £(x1) -,g(xl X2) -a3
X1 X2
The corresponding Liapunov function is
2a3 F(x]_)/x% f(Xl)/xl 0
V=xx8 2 = X f(xl)/xl 26(x1,x2) /2 + a2 a3
X2 3
O a3 ].
or
Xl X2
2
V = 2aj3 f(x1) dx; + 2 / g(xl’xz) dxg + 2 £(x1) xp + (azxp + x3),
o o
where
x1 x2
F(Xl) = f f(xl) Xm, G(Xl,XZ) = / g (Xlz{z) dXz
o o
and
0 0 0
%2
V=2 xp 0 - lag g(x1 x9) 1 }g(xl Xp)
[ x - f! (Xl) + X2 ‘ dxol {0
2 X1
0 0 0
or
O R T N T V2 L W '
Py g(X1 .X2) _ X1 X2 g(X1 X2 2
V=-2[a3 —ax] dxz:l X2 .

(o]



The stability conditions are

- 66 -

a, > 0, E3F(xl) + f(xl)x2 + G(xl,XZ )] > 0,

X
g 1) L
as X9 f'(xl) + X9
o]

(28) X + H(x,x) X + ap; x + f(x) = O.

The matrix form is given by

2
2g(x1 %2)
'axl dXz > 0.

0 1 0
2{._ = 0 0 1 X, Xl = X,X2 = }.{,XS
_f(Xl)/Xl ‘3.2 '%(Xl’X2)
The corresponding Liapunov function is
2a;F + a, Y
3 3 f
—z (x1) /4 0
\ S SZ/Xz
= x = R
)_(T - = 5T f(xl)/x1 8.2 + a3 2 8.3
0 a3 1
or
X1
2
V = 2a3 f(xl) dx; + 2 f(xl) Xy + a; x2 +
(o]
)
2
+ 23.3 f ['% (Xl,Xz) - 3.3] deXz + (83X2 + X3) s
o
where
X1 X2
F = f f(X1> Xm ) Y = / ')é(xl,xz) X2dX2
(0 o
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and

Vo= -2 Ei332 - f'(Xl)J Xg -2 [/)L(XI,XZ) - ag ] x% +

+ 2 aaxz

/2 }Exl XZ)
A 'le Xy dx,

The stability conditions are

X

1
a3 2 0, ap > 0, as / f(xl) dx; + £(x7) Xy > 0,

(o}

[aza3 - f'(xl)] > 0, [y(xl’

and

/}‘{zr)y’(’-xlxg)-l
o [ (T2 e <

67 -

.

X9) - 33] > 0,

0.
(29) % + % (x,5) X + g + a;x = 0.
The matrix form is given by
0 1 0
x = 0 0 1 x, where £ =’/¢(x
-al -8(x2)/y, -¥
The corresponding Liapunov function is
ajagy + a, Y/.)(]‘iZ a; 0
2G(xp) + a3y
Voxs x = x ! x3 %3
| 0 as 1
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l

or X
2 2
vV = al( ﬁ}xl + xz/ \/—ag) + (a3x2 + X3) + 2 g(xz) - ﬂ X2dX2 +1
o X2 a3 J
x2 |
+ 2 a3 / [‘% (Xl’Xz) - 83] X2dX2, J
o
where
X9 X2
G(xp) = / g(xp) dxp, Y = / ')(» (x1,%9) xpdxp,
o o
and
V=-2

a, g(x,) - a x2 - 2 (x, x,) - a x2 +
3 8%0/x, T2 2 1,%2 3 | %3

X2
) ¥ (x1 ,X2)
+ 333.2 3}{1 x2dx2.

[e}

The stability conditions are

g(x2) -4
az > 0, [ /x2 /a:;l >0, l:')é(xl’xz) - aﬂ > 0,

X
2 >7‘(X1 x2)
Xy ax, % dx2 < 0, a3 > O.

[¢]

(30) ¥ + XEOX + g% + f(x) = 0,

The matrix form is given by

0 1 0
0 0 1 x, where )l = )‘(xl,xy_).

-£Ga) 82, -

B
[




The corresponding Liapunov function is

2a3 F(Xl) + asY
x1 1 0
V=x_8 x = x_ f(Xl)/ 2G(x9) + asY
X] x” 43 %,
22
0 a3 1
or
i A2
2 2
V = (a3x2 +x3) + l/a.2 [:a?_x2 + f(xl)] + 2 / [g(xz)/x -_aﬂ Xo4qXg +
o 2
X
2 1 9
+ 23.3 [)L(x]_’XZ) - a3J deXZ + ap 2agajy F(Xl) - f (xl) ,
o
where
X1 X2
F(x3) = / £(x7) dxy, G(xp) = / g(x7) dxz,
o o
X2
Y(Xl,XZ) = \/ ')L(Xl,XZ) XZdXZ,
o
and

Vo=-2 l:a3 gG)fx, - f'(xl)] x5 — 2 [y(xl,xz) — a3]x§ +

X
2
)')L(Xl Xz)
+ 2a3xy ""—"'*exl x2dx2.

(o]

The stability conditions are
az > 0: a3 > 0: EBg(xz)/XZ - f'(xl)] > 0’

X

2 )y(x]_ Xz)
¥ %) - a3 >0, % T % dxy L0
(o]



and

g(x2)
X2

1) % + al:;{.+ a3'x. + a2}7: + f(x) = 0.

The matrix form of the equation is

- 70 -

- a2:| >0, l:2a2a3F(xl) - fz(xl)J > 0.

0 1 0 0
X = 0 0 1 0 X, Xl = x’xz =
0 0 0 1
_ £(x7) -ay -aj -ay,
X1
The corresponding Liapunov function is
2 A F(xp)
- Ll £
12 as (x1) /% f(x]_)/Xl 0
: e14f(xl)/xl asa, + azA -f! (xl) aza, A
V=28 x = X
f(xl)/xl 3.33.4 ai + 32/a4 3.4
0 A a4 1
where
X
1
df(Xl)
A = (a3 - a2/a, ), F(xp) = £(x1) dX]_, £'(xq) = dx; ?
o}
or
a2 2
vV =

= (x‘} + a,xq

+AX2)

+ -az (X3 + asXxy + 84/32 f(Xl)) +

2 2
+ 1/a; (ag A - a4f' (%)) x2 + 1/a2 (2a; A F(x)) — a;f (xl)) ,




T
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(32)

and

- 71 -

. 2
V=-2 [az A - 34 £! (Xl) + 1/2 £ (Xl) XzJ X 2

The stability conditions are

a, > 0, a, > 0, A >0, [azA - a4f'(xl)J > 0,

and

2

[82 A - 34 f'(Xl) + 1/2 £" (Xl) XzJ > 0.

x+a§{'+a

4

or

33{' + g(;c) + ax = 0.
The matrix form of the equation is
0 1 0 0
0 0 1 0
X, X1 T X,X3
0 0 0 1
-a; '8(x2)/x2 -aj3 ~ay,
The corresponding Liapunov function is
a1 a1a4 a] 0
. 2&4G
Rias | a3A -ay +72 | a4 A+ gk, | A
X7 x2
aj a, A + g(xp) /%) aZ + a2/aa ay
0 A ay 1
a1384%112
2 er———
= (AXZ + 8.4}{3 + X4) + 32/3.4 (X3 + a4X2 + az )

Ixe

2 [g (XZ) X3

X2
234 ‘Zv [:g(xz)/xz -a2:| XZ‘dXZ,

X, X3 = X, X4

(X

-+

2
a2x2x3] + 1/a4 [az A - a1a4] [xz + ala4 x1

ag

2} .



- 72 -

where

X
2
A= ag -e512/a4 s G(gz) = f g(xz) dx2

and
N g(XZ) A - a4a1 2 2
V=-2 l: /x2 ] .XZ - [3‘2 - g'(xz):| X3 .

The stability conditions are

a; >0,a2>0,a4>0,A>0,
E‘l2 a4 - g a‘*j > 0, g(x2) Xg = 8yKgXgy > 0,

(x2);, A -aa]>o, [() -a]>o,
E%x/xz 134 gxz/X2 2

and
4y - 8'(x2) > 0.
33) ‘X" + al:)z. + %(x,;{) X + a2>2 + a;x = 0.

The matrix form of the equation is

0 1 0 0
0 0 1 0
X = : X, where = (x1. x9).
0 0 0 1 7L >L ’
! -a B 7L "a4
The corresponding Liapunov function is
2
Lla4 + 4184 y
a2 ag x ¢ asa a 0
1 421 1
2
a1a4Y a4 2] 3431
asal asap - a} + Z 2 + K "é?
V=xr8 2 =% a Xy 2 ‘
2 2 5
al iﬁl.’, ar al - alah +¢
82 - a2 34
0 azal a, 1
az
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or
2134%2) 2 3 a184x1 | 2
vV = [X4 + a4X3 + 32 x 2 -+ a_ll. X3 + a4x2 + 82 +
1 2 2 2
+ aga4 azay, }Z(xl,xz) - a2 -aja4 | x3 +
2a] X2
+ 52 ' 2 2
az f [3.28.4 >L (Xl,xz) - ag - 8.134_:] x2dX2 N
o
where
%2
Y = J" }L (Xl,xz) chlXZ s
and °
. 2 2 2 a2 _; 2
V="- ay | aj, ’)L(xl,xz) - %2 - aja, - 2 ‘)L x3 +
ai ;< _ﬂxsnlt_--. FEPRN 1
1a4qxz . SH(EL,%EZ) x2ux2
+ 32 / 1}{1 )
o)
F A &f Xq

ax) r)sa + “8x» . The conditions for stability are

where ')é

a]_>0,a2 >O’a4 >O’

2 2 2 ‘
a2a4">L-a2 - aja; - a2/2’}4>0
and
2 2 & <0
a28.4 ')‘ - a2 - a]_a4 ) 0, 1){1 *
(38) "X+ ajF 4 agX + gx) +f(x) = O,

The matrix form of the equation is

0 1 0 0
. 0 0 1 0
X = X .
0 0 0 ' 1
-f(x1) -g(x2) -aj3 -ay
X1 X2




- 74 - |
The corresponding Liapunov function is ‘
2 A F(x1)
2 f(x]_)/
x 1 as £(x1)/x1 L 0
N
ay, f(xl)/ azpa - £'(x1) + % B(x7) as A+ %(xz)/ A
V=X 8 x = x X, x x4 |k,
2 as
E(x1/x% a4+ glx2)/y, a, + g ay,
0 A as 1

or

<
]

2
(x4 + ayx3 +Ax2)2 + a4 (x3+ agxy + ad4/ay f(xl)) +

1 2 L1 2
+a, (ap A - a4f'(x1)) X2 + ay (2ap A F(x1) - a4sf (xl))

X9 g(xz) _]
+ 2 a, Xy aZJ x2dx2 + 2 [g(xz) Xy - a2x2x3] s

3 - a2/a4 f'(xl) = df/dXl

3 3

x1
F(xq) =f f(xl) dxy ,

o

and

X

2
G(xy) = / g(x9) dxy J

[o}

and

. g(x2) 2 2
V=-2 %, A . a, f'(xi) + 1/2 f"(xl) XZ—J x5 - 2 l:az - g'(xz) X3,




The conditions of stability are
a2>0,a4>0,A>0, EazA—a4f’_—_‘ > 0,

2
[282 A F - 3.4 fj > 0, g(Xz) Xy - 8.2X2X3 > 0,

and

N =

L g(x2)
X9 - ap >0, a - g'(x9) >0,
g(xz) A '
%9 - a4f (xl) + £" (xl) Xy > 0.

(35 x + aai. + a3§ + glx,x) + £(x)

i}
o

The matrix equation is

0 1 0 0

0 0 1 0

0 0 0 1

-£(x;) g(xq %9)
X1 X2

a3

The corresponding Liapunov functicn is

2 a4 Xy - X7 ' 0
x1

X1 X2 %2

YA f(xl) a3A"f'(Xl)+ zaiéc 3,4 A+ g(xl’xz) A

£(x1) a+A+ g(xlaxz) az;z + ap
X1 X2 4

0 A 34 1

or
a a, 2
vV = (xa + oaxy + A X9) + /a4 (x3 + oagxy + a_; £ (x1 )) +

- o - A BN Smak s sl - N

[X o
]

|

|

[\

_[_\
[

2
I + 1/a4 (a2 A - aéf'(xl)) Xy + 1/a2 (232 A F(xl) - a4f2(xl)) +
| 2 g0y %)
gix] X3
i + 2 a, / < X, T ap) xgdxo + 2 (g(xlﬁxz) - asx9x3),
i (o]

[

1%



where

L]
n

Fh
n

and

<
n

X
1
f f(Xl) dxl s G

(o}

df (Xl)/ dxy

) g (x]_ xz)
- ———‘——xz

X2
Ag(xl, X2) _ 34 l:a g(X1,X2)] dxz:| X 22 +

- 1/X2

-5

ag > 0,3 > 0,

b

A

X1

(Xl Xz)
“axy

A

- 76 -

o

= a3 - a2/a4

a,£'(xy) + 1/2 £ (xp)

5 J, L =0

2
}x 3 ‘

The conditions for stability are

X)
f g(x1,x2) dx),

A >0, ap A - gy f'(xl) > 0,

2a, A F(xp) - a4f2(x1) >o, 8 (xl,xz) > agxypxj,

- 1/x2

g(x1,x2) az:l > 0 [az ag(x1 x9) >0
——— " -— 3 —_ )
[ X2 2X2
and
l:g(_x}l(;x_z)- A af'(x)) + 1/2 £ (x)) x
X2
ay de(x1, x2) g4y | >o.
Y axy
(36) x4 ax + Y (PE + oax + £(x) = 0.
v £ The matrix form of the equation is
0 1 0 0
0 0 1 0
x = :
0 0 0 1
— f(x1) a
- - -a
Ju | Y 4

X2 +

P g(x1 x2) +
A x1

X , where 74 =74(x1’x2).
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The corresponding Liapunov function is

1 [alaﬂx_l) + j ag £(x1) £(x1)
X% ag X1 X] 0
2
a;,  £(x1) agay + _Y_ ajay + ay alas
V=x35 x = X x] x 2 ap ap
2
£(x1) ajag + a a;, - aja, +}b ay
X1 as a
aijas 1
0 a2 A
or
ajay 2 2y a4
vV = (x4 + azxy + a, X 2) + as, (x3 +oagxy g f(xl ) +
1 2 2 2.
+ 3234 (agay P(x1,x2 ) - a2 - ajay) x3.,=“ +
1 2 2 2
+ ajza, (a1a, F(x7) -a, f (xl)) +
2a; ) 9
+ a% / F‘z% }L (Xl,XZ) + (- a?_/al )f'(xl) - alaz ] x2dx2 s
k [o} - ~
where
X1 X,
f / ajay,
F = f(x1) dx1 , Y = - £'(x1) x2dx9 ,
J 1 1 | a, ¥ 2dx2
and
: , 2
vV = - 2a, [al - f'(xl) J X, =-ay |ajap }L (x1 x9) +
2 2 ’ 2
- ay - aja;, - %_ ag ’y/(xl,xz )] x3 +

- 77 -

X2
ajay '})((xl ,X2)
+ 2x2 A aq Qx;

_E" (k) ]

x2dx2 s

1%



where
X
dy . [°
¥x,
o
and
. [ 3¥
¥ =\9x1

Jea+(

2 x1

¥
d x2 | x3,

The conditions of stability are

_78_

¥ f..J adn 5,

2 2 2
a; > 0, a >0,3 >O0, azaa’}t- ap - aja, -2 }L(xl’ x9) > 0,
] 1 2
a, - f (x1) > 0, ajay '}L - a 2/31 ' - ay a, > 0,
a4 At 2
— £ < 0, - - 0,
[az = - J aa, Y- az - a3, >
2 2 2
3134 F(Xl) - 3-4 £ (Xl) > 0.
(B KT+ g X+ DX + g + ax = 0.
The matrix form of the equation is
0 1 0 0
. 0 0 1 0
E =
0 0 0 1
-g(x2)
-al x2 = ‘% -34

The corresponding Liapunov function is

X, where )Z' = }L(xl,xz).

2
8 %% . ¥ 313, ! 0
2
as x1
2
ajay 1 2a4G(x2)+SE| ajas (k)| 2134
2 ay + "Xy D)
L
2
ajay g(x2) a2_ala4 4
aj ag + X2 47y )L a4
alas
0 1

a2

ag

»
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or
aljaz, 2 ap ajag 2
Vo= (x4 *+ oagx3 + Tag X2y o+ ey (%3 + aux, + @2 *1) 4+
1 2 2 2
+ agay a2a4}L(x1’x2) - ap; - aja, x3 +
X2
+ 2 a4 / 8(X2)
o Xy - a xzdxz + 2 [f(xz) X3 - a2x2X3j} +
)
23l . 2 2
+ 2 agag f (x1,%2) - a3 - ajas | xpdxy
agp Jo ’
where
[*2
G(xy) = J g(Xz) dx,, }L = }L(Xl’X2)>
o
72 aja
a 124 _ al:l X9dxy ,
Y _/ [_az b2
o
and
X9 g
. ajas | g(x2) 2 2aja (x1 x9)
i oo, A _azsz 214, [ dECA )
2 X2 ap y ‘ax) 24%2
- 2 2 a ; 2
2z Eaz% ¥ - a' -a, — o }‘] X3
where

3 Py

|, *2 t axy *3.

]

[ ]
The conditions for stability are

g(x2)
a1>0,a2>0,a4>0, X2 -8‘2>0’

2234 Y (x,%9) - af -aa > o,



- 80 -
g(Xz) X3 - a2X2X3 > 0,

X

2
¥
xa axl X2dX2 < O
o
and
2 ag y

aza4’}L- ap g' - ajay — 9 }L > 0.
This completes those examples found in Mekel's thesis, [iﬂ .

The next example comes from Puri, [}ﬂ , and is a time-varying linear system.

(38) X'+ a3 (£) x + a, () x + a(t) x = 0.

The matrix form of the equation is

0 1 0
x = A(t) x = 0 0 1 X3 X3 =X,X2=}E,X3 = X.
-a] -2 ~as3

The form of the Liapunov function is

511 512 513
V=xp35 X =ZXr |S12 S22 So23 X
513 523 1
where the time derivative is given by
Vo= Z S x + %S x + %8 X = x [?q s + 8 + 8 A_] x =
= X {:2 S A + é_;] X = % I x =
—
. 2511 - 2a813 - 2a1823+ | 2812 - 2a1S513 - 2al+
S11 - 221813 . .
+ 2 Si2 + 2 8313
=XT . 2 833 - 223833 *+ 2513+
0 S92 + 2879 - 2ap 833
-2ay + 2833
0 0 2 523 -2 al

I
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Let the off-diagonal elements in the matrix T equal zero. To simplify the
Ty43 element let S;3 be identically zerc. Then, S1p2 = a1. To simplify the

Ty, element let Sp3 = X3= constant. Then, S;; =%3a; - 4;. From the

To3 element, Sopo =°<3a3 + ag. The resulting Liapunov function is

X3a; - a a1 0
V.= ay X3a3 + ap S CON b
0 °<3 1
or
. 2 2
vV = (°<3a1 - aj) x1 + 2a1xixp + (as +°¢3a3) Xy +
+ 2% 2
3 xpx3 +X3 ,
and
0(3 a1 - al 0 0
\.7 =x T x = x 2a; + 52 +°(3 é3+
T T 0 0
- 2°<3 a2
0 0 2% - 2a3

("(3 51 - .3..1) xf + (2a; + 52 +°(3 ;13 - 2°6 a2) x22 +

+ (2% - 2ay) x5 .
The conditions for asymptotic stability are
X3 4 -4 <0, t o,
2a; + ap, + Kzaz - 2% a) & 0, t > O,
o3- a3 €0, t Z 0,
°<3a1..;,1>0,t>/0,
(°(3 a; - ;11) ("(3 a3 + ap) - a%)O(% (0(3 a; - 5.1) .

I



- 82 -

The following five nonlinear, autonomous systems were afialyzed by the

"common Liapunov function' technique of Goldwyn and Norendra, Eé] .

(39) X+ £x,%)x + o(x) x = 0,
The matrix form of the equation is
0 1 .
X = A x = x; x1=2x,x =x,f =£(x1,x2),
-g -f
and g = g(x1). The Liapunov function for the corresponding linear system,
where £, g % O, is
P11 P12
V=x P x = X7 X
P12 P22 \
and
Vo= X7 [:ém P+ B 4] x =- 2Q %,
where
2g P gP22 - P11 + fp12
g:
gPpp - P11 + £ P12 2f Pyp - 2 P2
> 0 for
If f is set equal to

For constant f and g, the Routh-Hurwitz conditions demand f, g

Hence f = 0 is in the allowable range.

stability.
gP22 - P11

zero, then
2 g P12

- 2 Pyo

Q =
gP22 - P11
Since for ¢ > 0, Q can never be positive definite if P is positive definite:

This results in the following relationships

thus we must take Q = O.
= P8

Py = Pyq
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(40)

- 83 -
where P29 is assumed to be 1. Therefore, we have a CLF for the linear system
when £ and g are nonnegative constants. The corresponding Liapunov function

for the nonlinear system is

1
2
vV = 2 x, 8(xq) dx; + x2 ,
o

and

» 2

V =-2f (xl,xz) X9,

| 2
where 2 L/‘ Xy g(xl) dx1 = gx; , if g is a constant.
o

The conditions for asymptotic stability in the large are:

f(xl,xz) > 0, g(x9) 7£ 0 for xl=?é 0,

X1
U/’ x] g(x1) dx; —p oo as

X1 I—p co.
(o]

X+ f(x) x+e(x) x = O.

This example is a special case of example (39) but the state variables

A X1
are chosen such that the "average dissipation", f(x ) = J0 f(xl) dx;,

X

is more significant than the "instantaneous dissipation', f(x). This method

is called Lienards transformation and the resulting matrix equation is

- ?(xl) 1

.
X = X, X1 = X.

N g(x1) 0

A
For this case, the Q matrix for a system where f and g are assumed constant

is

A A
a (f P1; + 8 P12) f Pyp +g Pyy - Py

A
£ Pp+ g Py -P11 -2 Ppp




- 84 -

Now if we select Q to be

A
2(f Pj1 + g P12) 0 1
Q = ,
0 0

we have a positive semi-definite matrix for
A
£ Py +g P2 > O,
From the zero terms, we find
A

P1p =0, P;3 = g Py, and £ g P2 >0.

Let Py = constant = 1. Thus, we have a CLF for the linear system. For the

nonlinear system we have:

v

L

X1
2
2 j x1 g(x1) dx; + x5,
o

0 A 2
vV =-2 g £ x{.

From V and G we obtain the following sufficient conditions for asymptotic
stability in the large:

A
£ (x1) > 0 for xq # 0,
g (x) > 0forx; # 0,
X1
\/ x1 g(x1) dx1] —» oo for /x1/_> oo .
o

Note, the above conditions do not demand that the instantaneous dissipation be

positive, but only the "average' dissipation be positive. An example of this,

consider
g(x1) = 1,
f(x)) = x% - 7 x f + 12,
then,
A 4 2
f(x1) = x1 - 7/3 xI + 12 > 0 for all real xj,
5
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and
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f(x;) <0 1f -2 <x <-V3ad V3 <x < 2

(41) Second-Order Nonlinear Feedback System

The feedback system is descrihéd by the matrix equation:

x1 -g(x1)

1

X1

Xz -h(xl)

'f(Xz)

X2

This equation can be reduced to a special case of the single second-order

equation in example (39). But the difficulties in applying the previous

results are that the derivative of g (x;) must exist, and the "dissipation'

1

term, the coefficient of il’ in the single second-order equation is not

of constant sign in the vicinity of Xy =Xy, =

0.

In the CLF ~ technique the corresponding linear equation becomes

.x.+(f+g);c+(fg+h)x

X] = X, X9 = i +  gx,
£, g, h are constants.
The system is stable if
fg + h > 0,
f + g >0.

The Q matrix in this case becomes

0,

2 (Pll g + Plzh)

Pzzh + P].Z(f + g) -— Pll

Q (f,g,h) =

Pyoh + P12(f + g)- P11

2(?22f - P12)

For the nonlinear case, the choice of Py;, Pjy must be such that for constant

f, g, h we get the above stability requirements.

From these conditions, we

see that if g > 0, then any f greater than some minimum, f , is satisfactory.
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Thus, the values of Pij are taken as

P11 = h + £ (£ + a),
P12 = £
P22 = 1,
and we have
2(h+£ g E + 8) £ ¢ - D
2T £ & -9 2 (£ - 5

2 .
Therefore, Q is positive semi-definite if (h + fg)(f + g) > [g (f - Q] =0,
4

For the nonlinear f(x;) we define £ as

MIN [f(xz)] ,

*2

£

thus £ > £ . We also define f as

MAX [f(xz):] .

%y

Hh]
i)

For the nonlinear problem, we make use of the above CLF and obtain the

following new Liapunov function:

X
1
2 / [:ﬁ g (xl) 4+ h (xl)] xdx; + (£ x| + xz)2 R
o

<
L]

where

v

- % Q x.
The conditions for asymptotic stability in the large for this nonlinear

system are
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£ 8(x1) + h(x)) >0,

£ E -9 N
£ + g(x ) g(x) + h(xp) > 4 =~ 0,

X1
f [_f_ g(xl) + h(xl)] xldxl —» OO 3as lel —— OO .
. (o]

An_example of the above problem with non-differentiable functions is:

-1x11
f (X:L) = 2 + ae , a > 0 ,
| -x12
l g (xi) = - e >
i and
l h(xy) = 6 + 2Ixl.
Therefore3£=2and.f=2+a, Now (fg + h) 2 -2 + 6 = 4 > 0,

£+ g2 2-1=1 > 0,and (£ g + h) (£ +&) > (&)= 4. Thus, we
could let _!3_2 (£ -£ /4=3, 0or £=5. Therefore for stability "a"

can be in the interval 0 <€ a £ 3,

T W e

| (42) ‘% + f (,%x,%) X+ g (x.%x) x+h (x) x =0.

The standard state variable form gives

xl = X2

’.‘2 = %3

i3 = - h(xl) X - 8 (xl’XZ) X9 = £ (%1, %y, X3) %g
where x; = x. When f, g, h are constants, the Routh-Hurwitz conditions for
stability are

£, g, h > 0,

fg“h > 00
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This rather general third order, autonomous system will be analyzed by first
considering several special cases.

) x + £(x) x + o(x) x+hx =0, h =constant.

Using the usual notation, the Q matrix is

2 P13 h Pi3g + Pp3h -P31iP33h + P13f - Py

Q =|Pp3g + Pyzh - Py 2(Py3 8 - Pp3p) P33g + Py3f-Pyy - Py3..
Pysh + Py3f - Ppy P33g + Pyyf-RygPys |2(Py3f - PByg)

The choice which is made to simplify Q is to let all qij = 0, except

g9y and q33. The elements gy, and q33 are selectsd to be

122

it

2 (mg - h),

133 2 (£ - m),

where m is a constant. The resulting Pij's which are obtained are

P13= 0, P33 =1, Pp3= m, Pyy =mh, Pyp =h,

P22 = %'I' mf.

Since Q is positive semi-definite, it is necessary that £ - m > 0 and

mg -h 2> 0, where
f = MIN f >
= x2 [(xz) |
and
g = MIN I:g(XZ) »
= X2 .

and where Q#0. The value of m is selected such that (f - m) (m g - h)

is maximized,

or

I

IHoQ
+
=n

] 00'\1
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Thus, Q is positive semi-definite if g > 0 and
=

£g-h>0.

Now using the Py i 's and the Q matrix, we get the following Liapunov

function for the nonlinear system:

*2
V=mhx§+2hx1x2+2/ [g(xz) +mf(x2)J xpdxy +
)

+ 2 mnm X2X3

and
mh h 0
V 22, PFx = xq X,
h g + m £ m
0 m 1

where P* is positive definite. The system is asymptotically stable in

the large if

i

» b > 0,

>

[11]

£, g -h >O0.

(B) X + £(X) ¥ + g(%) % + h(x) x = 0.

Since we replaced h by h (x7) in this case, the change in the Liapunov

X
1
function is to replace h x;2 by Zf h (x7) %] dx;. The resulting Liapunov
o

function takes on the form:

*1
V=2m f h(xq) x1dx; + 2 h(xp)myxy + 2 mxyxy + x% +
o ,

%2
+ 2 /; Eg(xz) + mf(xz)] xodxo .

The constant m in V must be redefined.
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The time derivative of V gives

0 0 0
) 0 2(mg - H') 0
V=-xQ x =-x x
=T =T 0 0 2(f - m)
/
vhere H(x;) =h (x;) %) and H =d H. Thus for Q > O, it is necessary
daxy
that
f-m > 0,
and
7
mg - H 2 0,
where

7 /
H = Max [H (x1 ):l
*1

D

Let m be selected so as to maximize the product (f - m) (m g - H’ ). Then,

Thus, the Liapunov Function for the nonlinear system is bounded from below

by

X1
> “ 2 2
V 2 2n H(x1) dx3 + 2 H(x1) x0 +g x2 +mf x3 +

(o]

+ 2m X9X3 + X§ .
To summarize, the system is asymptotically stable in the large if
h(xl) > 0, x; # o0,

, B > 0,

-
" oo

-H > 0,

ItHh If Fh
1oe
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X1
f H(x;) dx; —» =0 as /x]_l—b oo

(o]

(c) The General Case

We want the general case to include the two special cases A and B.

Thus, in the integral in V, the functions f and g are replaced by functions

A
of only x9; namely, 2 (x2) and £ (x5).

to £ and g in case B.

Therefore, the V-function is

*1
V=2m H(x1) dx; + 2 H(x;) =xp + 2mxyx3 + x§ +

A A
where m, g and f are to be determined.

aXo

v )

o

o

V=-xrQ

A A
[g(xz) + m f (Xz):j Xy dxy

The time derivative of ¥ becomes

A
The new functions f and 'g\ must reduce

X = - Xr

0 0 0
A
0 2(mg - H' ) (g -8 +m (f - £)
A
0 (g -8 + m{f - ©) 2 (£ - m)

To insure that Q is positive semi-definite, we demand that

8
I oo

I +h

and

4

(

The functioné

[N . -
TSP S ¥ A

m

m
A
£

7

H > 0,

> 0,

E'H )(f-m)-Max

[(8‘8)+m(f"f):| > 0.

and g are now chosen to minimize Max [(g - g) +m (f - f)]

P T R
i <

1]
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First, the following definitions are given:

—f— (x9) = MAX [f(xl’xz’x:;il s E(xz) = MAX Eg(xl,XZ):l
X1, X3 x]
f (Xz) = HIN[f(Xl’XZ’X3ﬂ 3 g(Xz) = MIN l-_—g(xl’xz)j
X1, X3 31
) =E () + £(x2) B =gG) + g (x2)
2 L2
£ o= x| FG) — £ (x2) ; g = MAxfE(xz) -2 (x2)
X2 XZL 2

2
£ = MIN [g(xz):l , g = MIN [z (XZ)J

X9 X9

Thus, the last condition which is stated above for a positive

Q becomes

2
A(mg-H/)(f-m)-(§+m’f) > 0.

q

If now m is chosen to maximize q, we obtain

/ N
g+2H -fg

B
1]
N

It rh

2

i

+ 4

e

For this value of m, q > 0 if £ g -H > &

noQ

where

6=/\/ ?zfu +fg(fg+H) + g g.

I"h

semi~definite

In summary, the general third order system is asymptotically stable

in the large if:

h (x;) > 0 forx; # 0,

/
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/
g - H > €20, and

Il Fh

*1
/ H (Xl) dxl e o o as lel —y DD,
o

Special Cases of Part C

N /
(1) Let f, g and h be constants. Then f =g = €= 0, f = £,g=g, H
and the Liapunov function is
2
2g 2g
2 2
+x3 +2g %0+ £ (f g+h) x32
7 2g

The conditions for asymptotic stability are
h >0, f > 0,g >0 and
fg - h > 0.

. ~
(2) Let f be a constant, g = g(x) and h = h(x). Then f = g= eE= 0,

/
f=1f£, and g and H are defined as before. Thus, the stability conditions

are the same as Barbashin’s results:
h(xl) > 0, X, 7é 0

/
£, >0

noq

, H
/'S

=

f.g-

X1
\/O [H(xl)] Xm —p <0 as ,xll —_— o0
(3) Let f = f(x ) and g = g(x). When h is a constant, we get case A.

When h = h(x), we get case B.
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(4) For a particular example, comsider

R S 3N
- -(x1 X2 %3
f(xl,xz’x3) =1+ a +ae
'le + 1
6 2
- (Xl + X9 )
g(xy x9) =6 + be + 2 b R
’ A
x2 + 2
3 “Xl
h(x;) = 1 - x9 1 — (1 + xl)e for x; > 0,

h (- x3) = h(x1).
We want to find the range of a and b so that stability is guaranteed. Thus, we

obtain the following:

2
-x
_ 2
f (x2) =1 -+ a + ae
[x2] *+ 1
_IE (Xz)'—‘ 1
2
-x =
2
AN
£ (x)) =a e + 1 + 1
2 !xz ' + 1
2
-,
~ 7
f = Max a [:é + 1 = a
+
X, 2 'le .L_

+h
]
o
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2
E(x2)=6+be + 2 b
4
x2+2
g(xz) =6
2
%2
A
g (x) =6 +b e + 2
2 2 4
x2+2
2
e = Max b e + _2 = b
x2 2

-X]
H(xl)=x1-3|:1-(1+xl)e J,x]_)O

H (-x) = - H (x)
=X

1
1 - 3 x;e - ,%x >0

H’ (x;)

/ /
H (-xl) =H (xl) , and

Therefore, £f g - H* =5 > ‘0 and we can select € < 5. Then,

€ =\/f fn’+(fg)(f +S+g

oo
1t oQ

2 2
=\/a + 7a + 6b <5,

or
a2 +7ab + 6b> < 25,
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The region of allowable a and b for asymptotic stability in the large is

a >/o,b>o,a2 +7 ab+ 6 b2 < 25.

soe

®) “x + fx+g (x) x+ hx =0.

In this case, f and h are constants. Case D is a special case of C
but if considered separately, less stringent conditions for stability can
be derived. The state variable form of this equation is obtained by a logical

extension of the Lienard transformation:

y1 =¥3

§2 =-hy

93 ==-G(y;) + vy - fy;
where

y1 =X
and

Y1
G=G(y1)=f g (y1) d v
o

Assuming the usual forms of V and V, we obtain for the Q-matrix the following:

1

G
2(h Pyy + G/y; Py3) |hPyp + G/yy Pp3-Py3 | hPp3 “"/3’1 P33 + fpy3 - P13

Q = | hPyy + G/y; Pp3 - P13 -2 Py3 fPy3 - Pyp - P33

hPy3 + G/yy P33 + fP13-Pj3|fP3 - P1p - P33 2(£fP33 - P13)

We now select the elements of P such that

2(f G/y1 - h) 0 0

Q = 0 0 o |-

0 0 0
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Thus
2

—
=
1]

P22 f/h, P13 = f, P33 = 1, P23 = O,

and, hence
71

2 2
o

N

2
or
71
6 _ £
V =2/f £ Tyq h | ypdy; + " (s
Yo L _
2
+ (fY1 + y3) 3
and

. 2
V==-2(£6/y; -hy

In summary, the system is asymptotically stable in the large if

£ >0,n > 0, G(yl)/y > 0 fory; # O,
1

f(;‘(y]_)/y -h >0,
1

4
(£ 61y, -1b) yidy] ——p oo a8 ,y1| e oO-
o :

In passing, we note that only{G (yl):| , must be positive and not necessarily

Y1
g (y1 ). An example of this fact is:

f =36, h =186,

2
g(y1)=yl{ -7y, t12
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where
g (1) < Owhen -2 < y; < - V3 and V3 <y < 2.
4 2
The corresponding[a(ylﬂ is[%l -7 y1 + %ﬂ, which is positive, and
L vid 5 3

min| (G (yl) is 187.

_ 36

71
Thus, £ G(yl) -h > f<187>- h=1 > 0. Therefore, all stability conditions
—_ 36

Y1

are satisfied.

The next example is from a paper, l:16:| , by DiStefano. The subject of

the paper is concerned with the best choice of state variables for the stability
studies of nonlinear systems by the Liapunov Method. The example is the same

as one of Schultz and Gibson's, example (2) in this compendium. But by a different
choice of state variables, DiStefano was able to relax some of the conditions

on the non-linearities in the system.

Second Order Example

The system equations using the canonical state variables as per Schultz
and Gibson are
1 "%
X9 =-xp - X9 f (x7) - x3x9 df(x7) - x1 @ £ (x1)-
Xm

The resulting Liapunov function and its time derivative were found to be

2

V=2 Léxlf(x1)+xl %ﬂ] dx1+(x1 +x2) s
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b 2 2
vV = 2 X2 g_:_ -2 @Xl ‘f (xl):
1

where w = X1 f (xl). Thus, one of the restrictions on the nonlinearity is
that w has positive slope.
By using "block diagrams’ the author determined a new set of state

variables which can be shown to be stable without restricting the derivative

.dw_. The resulting set of equations and the Liapunov function, which was
dx
1

derived by the Variable Gradient Method, are

x1=-x1f(x1)+x

;:2 =% £ (xl) (1 -é) - %,
X1

) r

V=x, +2 (@-1)J x1f (x1) dx;
o]

. 2

V=-2x22 ~2(é-1) xlzf (%)

Thus, for V 2 0 and V < 0, it is sufficlent that @ >1 and w = x; £(x;) > . 0;

but nc condition is placed on the slope dw .
dxy

The final example was taken from a speech [?ﬂ given by Br. J. LaSalle

in Iowa, in 1964.

(44) Third Order Example

The system equations in state variable form are

xl = f (xl ’ xz)

[ 4

X2 T X3

Xy = - plxp) - alxy) - axy.



The choice of ¥V for this system is

°<(x|) +

d & (x1)

dxq

X2

w = @(Xl) + b,(xz) + 2 cxj

2cxp + 2x3
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where »¢, @ and ¥ are undertermined functions and C is an unknown constant.

Therefore, the time derivative of V is given by

<
Il

- 2cpxy - 2pxj

Let

g

A
é

Then, V becomes

it

2x]

]

2p(x1), and c

2ac x3 + 2q(x2)

= 1.

- 2¢cqx

(ﬂ)T_;g = Xf -I-@'fxz + @x3 + XXB + 2cx§ +

2
2 - qu3 - 23.CX2X3 - 23X3 o

2 X + p/ (xl) Xy
G = 2 p(x1 ) + 2a X, + 2q (xz) + 2x3 X ,
2 %y + 2 x4q T
or
R O L A R R T

SHCNE

3

dxl
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We now check the curl equations:

d 2y bk
= 2 -y,
woy P T
a2y B , - dzy |
3X33X2 - - 2x29x3
__.D_iv._ = 0 = }iv__. .
x1dx; dx30%]

Thus, by line integration we can obtain V:

]
V'=x2 + 2 (x4) +q (x,) x, d x +ax2+
1 o P 1 q 8%, 2 2 2
2

+2 x9 x3 + X3 .
Therefore, the conditions of asymptotic stability are
x; f (xl, xy) < 0 for x 7£. 0

p (xl) X + ¢q (xz) X9 -d p (xl) £ (xls Xz) X9 >0
d x

a- 1 >0

P (X1)+, q (xz) > 0.



(1)

(2)

(3)

(4)

&)

(6)

)

(8)

(9)

(10)

(11)

(12)

(13)
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1.

Some Definitions and Basic Theorems

In this section we set down some basic definitions and theorems which are
used thruout the ensueing work. Thorough discussion and proofs are available
in various. text books and monographs including (_11 , [4] and E9] . We are
primarily concerned with a system of autonomous differential equations of the
general form.
¥ =TFT@, T (0 =0 (1)
Let Sp denote the open sphere || '52" < R and Hy its boundary and

assume that (1) satisfies the existance and uniqueness theorem in a region

Sp. Liapunov gives the following definition of stability of the origin.

Definition 1: The origin of (1) is stable if for any % & S, there is a

Sg ©) < Sg such that if X (t, Xy} is the solution corresponding to an

initial vector X, which lies in Sg, then X (t, X ) lies in Se. thereafter.

Definition 2: The origin of (1) is asymptotically stable if the origin is

stable and there is a §5 > O such that X (t, X;) —»0 as t —» + 00 for

all % in Sg,.

Definition 3: The origin of (1) is unstable whenever it is not stable.

Definition 4: The origin of (1) is globally asymptotically stable if it

is asymptotically stable and SSQ includes the whole state space.

In the sequel we will direct our attention to control systems which
include one or more nonlinear functions @)(. We will not in general
specify Q(J") completely but will consider a class of functions which
satisfy certain prescribed conditions. A function belonging to this class
will be termed admissable.

Definition 5: The origin of the control system state space is absolutely

stable if it is globally asymptotically stable for all admissable functions

Q(T).
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Theorem 1: (Liapunov Stability Theorem). Whenever there exists a positive
definite function V(X) in SA whose derivative % along the trajectories of (1)
is negative semidefinite in Sp then the origin is stable.
Theorem 2: (Liapunov Asymptotic Stability Theorem). Whenever there exists a
positive definite function V(X) in Sy whose derivative ' along the trajectories
of (1) is negative definite in Sy then the origin is asymptotically stable.
Theorem 3: (Liapunov Instability Theorem). If there exists a positive definite
function V(X) with continuous first partials in § and 1f-V is negative

definite in Sp then the origin is unstable.

Theorem 4: (Barbashin-Krassovskii complement to Theorem 2) If the conditions
of Theorem 2 hold and Sy = Sgo and V — 00 with || X[, then all solutioms
tend to the origin.

Theorem 5: (LaSalle, Barbashin and Krassovskii, Tuzov)

If (a) V(X) — oo with ||®|, (b) the locus of points such that V = 0
contains no nontrivial solution, (¢) V is positive definite and (d) - V is

positive semidefinite then the origin is globally asymptotically stable.

Equations of Motion

Much of the original work in the study of nonlinear control systems was
based on a model composed of a linear plant and a nonlinear control element
or actuator. If the actuator contained no dynamic characteristic, i.e., the
feedback acted on the plant directly thru the nonlinearity, then the control
was called 'direct'. On the other hand if the feedback acted thru one or

more derivatives as well as the nonlinearity the control was termed 'indirect'.
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This is illustrated in fig. (1). The system

r(t) N o £ =eo) c(t)
—»Q——»—- N " G(s)

actuator plant
(a)
Y - T
r(t) +, ot Qe[ T, ¢ c(t)
1R o e S >
B I e A ]
actuator plant
(b)
fig(1l)

in fig(la) is a direct control system. That in fig(lb) is an example of an
indirect control system. In present usage the term 'indirect' refers
strictly to the configuration of fig(lb).

In general we will comsider r(t) = O and it is clear that many control
systems with a single nonlinearity can be put in the configuration of fig(la).
In particular, the system of fig(lb) is readily transformed into the configura-
tion of fig(la). However, the distinction between ‘direct' and 'indirect'
control systems is significant if we agree that G(s) be stable, i.e., all
poles of G(s) have negative real parts. In this case the linear part of the
indirect system has a pole at the origin and is unstable whereas the linear

part of the direct system is stable. The treatment of the two situationms will

be different.
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In more general cases of interest, however, G(s) will have one or more poles
at the origin and possibly poles elsewhere on the imaginary axis. Hence in
more general situations the terminology of direct and indirect control loses its
mathematical significance and it would be more convenient to classify the system
according to the location of the roots of the characteristic equation of the linear
part of the system. However the terminology still has some physical appeal and
will be used.

If G(s) is a real proper fraction in s with the order of the numerator less

than or equal to that of the denominator its partial fraction expansion takes the

form
G(S) =<><0 -+ _C..’_‘_].'__ 4+ - - = n
S-N S-Np

where n is the order of the denominator and N's which are not real occur in

conjugate pairs. Then the system in fig(lb) can be redrawn as in fig(2).

~ K, >~
J1
Q(T ) 1 > A >
ol 4 1 | ¢ S- N1 ! L
| = .
1 o o
(o] o o
o]
(o] [e]
yn
1
a0 L - q g
S-An n

fig. (2)
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The system in fig.(2) can be described by the system of equations

¥i =7\1Y1+§ i=1,2, ...

n
G = Z (-O(i )yi -+ (-O(Olg

i=1
é= Q(0)
or in matrix form
¥ = Ay-B
T = <ty - pt
£ = o)
where A=(N{ o o ... o) ;b= (-1
o My o . o -1
\ © o .. . .. .)\n) \-1
¢ = (- 1, = 2, + - ni P=Xg

Jatae
AW L

~® Since in general we are dealing with complex vectors and matrices the
superscript t will designate the Hermitian transpose here)

This is Lur'e's canonic form.

~
v

The canonic form of the control system equations can be obtained in another

way. Suppose the transfer function G(s) is given as

G(s) = BoS +Bys +...+By

n-1
S +o .. HX

T
5+ o

Then fig(lb) can be redrawn as in fig(3).

o Q(T) Real 1 N
N - n n-1 B,S + BiS +...+ B
S S + 15 +...F n
fig. (3)
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The set of equations describing this system is

o + P e+ g =&
‘é' = Q(0") >
0 = - (gD + Blnn'1+...+Bn)Tl = (Uan-1+ 6‘21)“'2 o8 M - pfl
where pz A,
ot
¥i= ByoXy -By i=1,2, ..., n
P B

Now the state space variables are defined by
n-1
(Xl, X2, ceey Xn) = (Yl,Dn_, siore ,D n)

so that the following first order system equivalent to (2) is obtained

x| 0 1 0o ... 0 0 X1 / 0
X2 0 0 1 ...0 o0 X9 0
D - ' : +| .
Xp-1 0 0 0 0 1| lxg1 0
x| “An “Kp1%2 "Xy -Xy ‘Xn | & |
é = @

X\nx 1+ -..len =

or in vector notation

¥ = BX - ©
£ - @)
C =3 t X -8

2)

(3
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‘where 0 n
u = 0 3 Vo= .
-1 1

This is sometimes referred to as the 'state’ ‘representation of the system.
The eigenvalues of the matrix B are the characteristic roots <f
the linear portion of the system. Let these be distinct and designated by

7\1,7\2, .+« A+ Then the canonic form is obtained by making use of the

following Vandermonde matrix.

/ 1 1 v ” v 1 \

’ N A2 - ’ . An \
2 2 2
T = Al kz > v . )\n
n-1 n-1 }?-11
- - -
\ }1 )LZ 7 n |
The canonic variables ¥ are defined by the transformation.
X =T Y
* Equations (3) become
. -1 -1
§ = (M
-t -
or 0"—' v T y - Pg
hd - —
y =AY - be
§ = 2@ (1)
-t—Q
g=71<73 - p¢



where
-1
A=T BT =[N 0 0 .. 0
0 )~2 0 0
0 0 0 o An
-1 _
P =T u
-t -t
c = v T

In what follows the form of eq. (1) or (3) will be taken as representative

of an indirect control system.

the egs. are in camonic form.

However, it will not always be assumed that

It will be stated when this assumption applies.

The form for the direct

control system 1is

y=Ay-TF¢
£ = o) (4)
0- 35 - pk

If B, 1s zero, note that (4) becomes
vy = AT - B¢ 1
¢ = @) (5)
g = Ep'y I

The 'characteristic' function Q( ) will be assumed, for the present, to

have the following properties

1. Q(Q") 1s defined and continuous for all O~
2. QM) = 0and UQ(C) > 0 for all 0 # @
3. The integrals
+ oo
f Q(0")daT diverge
[+]
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Any function having these properties is termed admissable. At times it will

be necessary to modify the requirements on the class of admissable functionms.

3. The Problem of Lur'e - Indirect Control

Initially Lur'e and Pastnikov obtained sufficient conditions for the

absolute stability of a class of direct and indirect control problems. The

treatment given here follows a reformulation of the problem due to Lefshetz.

The indirect control system eqs. are

Y= A7 -3¢
§ = o)
T -y - pé

RN —

It is convenient to transform from the variables C§,€ ) to new variables(xX,J )

defined by the transformation

]

X Ay - B'é

t
0=ty -pé

From (1) if ¥ and é — 0 so does X and (. If the converse is true then

(X,0°) stability describes the (?,é-) stability. For this to be true (1) must

have a unique inverse, i.e., we require

Now

A

-t
(M

b

P

-t -1

|al - & B

L]

Since A is stable we know that |A | # 0. Hence we must have

-t =1_
p#EC A b

Q)]

(2)
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This relation between parameters of the system is assumed to be true. The system

equations become

% = AT -BQ (@)
. t 3)
0O=cx-pQ(0)

If eq. (2) holds the only singular point of (3) is X = 0, T= O since
®(g) =0 if and only if 0" = 0. This is a necessary condition for absolute
stability.

The method used to determine the sufficient conditions for absolute stability
is based upon Liapunov's assymptotic stability theorem and the Barbashin-Krassovskii

complement. Lur'e and Postnikov considered a Liapunov function of the form

t vy
VEE = % & +30) §@) - aeae %)

o
where B is a positive definite hermitian matrix. Recalling that ¥Q(G¢") > O,
G # 0 and Q(0°) = 0 for 0 = 0 it is seen that Y®F) is positive definite with
respect to (X,0). Furthermore recalling the requirement thatf(rQ(O")dO’
o

diverges as (° — 0o it follows that V —o00 for || (X,0°)I| —> 00 and

hence the Barbashin-Krassovskii complement is satisfied.

Differentiating (4) with respect to time

P ot t L4 P
V(,00) =X BX + BX + QOo)0O (5)

w4l

using (3)
t t t t t

a —
V=% A BX -b BX @ + X BA

%
}
x|
=}
o1
-3

™3 __t t ‘t "t__ _t_ —
V=% (-A B-BA)x + @ (b B-1 c)x + x (Bb-1 ©)

N fi=
N

+ PR
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« _t _ * okt _t _
V=xCx + PRQ+(@Q d X + X Q) (6)
Where -c=aB8 +3B A (7
=B b-1T¢ (8)
2

*
and use has been made of the fact that § = @ Eq.(6) can be written more

compactly as ¢

V(x,0)= & .09 [C g x
t (9

d p Q
According to a theorem by Svlvester necessary and sufficient conditions
that -{i be positive definite is that all of the principle minors of the
matrix in (9) be positive. Hence we require that C be positive definite

hermitian as well as

C 4
> o
_t
cAa P
Now
lc o | _t -1
= el (p- aa€ a) > o
_t
a A
Since J€| # 0 we require
to-1 _

There are some comments to be made concerning the relationship between
the matrices B and C. Eq.(7) is referred to im the literature as Liapunov's
matrix equation. It can be shown (see [1] and [2] ) that if the matrix A is
stable and C is any given positive definite hermitian matrix then (7) has a
unique solution B and B is a positive definite hermitian matrix. In particular

i1f A = diag (7\1, «oe> An) and Re )\i ==-M i(o we have from (7)
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% +A ) By ==Cyy

b - -Cjk (11)
jk A*j +)\k

Hence, we have the following theorem.

Theorem: Sufficient conditions that the system of eq (1) be absolutely

stable and that C be positive definite and the inequality (10) be satisfied.
The above formulation yields more general results than those originally

obtained by Lur'e. For the purpose of comparison an analysis following

that of Lur'e is given. Lur'e considered a special canonical system where

A= diag(Al 3oy Anl
_t

b = (-1,... -1)

_t

e = (XN )

The Liapunov function has the form 8f (4) with C taken as
— —t
C =37 +diag(Ay ,...,A,)

and hence

=- A%
Al ]'Kk + diag (A . Ap ) where -Mj = ReNi < 0
i+ Nk M My,

To see that C is positive definite note that

-t - t_ _t
X € x = x 3

— t
x + diag(A. oo sAL XX

n 2
+ Z AT | X4 | 0 for T $ O
i=1

t _
X

w]

—e o

X

if A

[
[\
[e]

Now

P _t
-V = x diag(A1, ..., Ap) X

t t

+ XRIF R4 @A T+ T dQ +p Qg

x|




U T T T W T

t t -
Add and subtract J/P'Q (X § +3 X) to -V. Then

2
v =§t diag(A,,...,Ay) X +|-z\t§ + v7 ¢l
t t t t

+ @A X + X AQ- VYA Ea+3

i diag(Al,...,AnJ% + 3% + VI |
— -t - -t _ —
+ Qe -vF3d) x + @ x (d - v32A)

Since Aj 2 0 we have at least a positive semi-definite form for -v if we require

_ _ (12)
a4 -vFa= 0
Eq(12) is equivalent to the n scalar equations
n
a, a _Ax o+ 2 JF\‘Qk=0, K=1,2,...,, (13)
'=1 * -+ 2
j 7\J. Nk 2M
or since the only restriction on the A; is that they be greater or equal to
zero we have the requirements on Kk
- a b )
i* X _ ™ 2 0, K=1,2,...,4 (14
ax L +— -, ,Vvp ’

j=1 7\? +7\k
Equations (13) are called the ‘prelimit’ equations. The equalities of {14j are
called the 'limit' equations. If we require that the inequalities of (14) hold
this corresponds to Aj » O which gives a positive definite form to 46. If we
allow the equalities then we have some Ai = O and -% is only positive semi-

definite.

We arrive at Lure's sufficient conditions for absolute stability by the
following two considerations. We assume that for some classes of systems
under consideration here that whenever the limit equations have a suitable
solution then the prelimit equations have a suitable solution. Hence we reduce
the complexity of the problem by examining the limit system. Also, Lur'e
postulated that the aj; are real or occur in complex conjugate pairs corresponding
to real or complex conjugate pair i(Note: It is readily shown that this insures

that the left side of (14) is real). Hence we have
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Lure's Theorem: A system described by the equations

% =N\ixi + Qo) i=1,2,...,n Re(A{) < O
=% - -pae)

where complex A jand &Xjoccur in corresponding complex conjugate pairs is
absolutely stable if there exists a set of roots aj, aj, ..., satisfying
the limit equalities of (14) such that the aj are real or occur in complex

conjugate pairs corresponding to Aj.

Conditions comparable to (13) or (14) are easily obtained from inequality(10)

of the Lefshetz formulation.-% is positive definite if we choose

éi = B E'- c =0

N =

Assuming the canonical form of the system equations and the above B

n
°\j=a*_’j . ak — Aj + =0 j=1,2,...,n
k=1 7\"3 +Rk 2Mj 2
or taking the complex conjugate and interchanging subscripts
A, y 2 (15)
LD E . °_Ez_ls _‘%.k =0 k=1,2,...,n

I NS
j k

Note that these eis. are identical to (13) except for the V?? term.

The Problem of Lur'e - Direct Control

We consider here a direct control system described by the system of egs.

|

X = AX-F Q) o
=3

|

where A is a stable matrix and we assume the only singular point of (1) occurs
at the origin. Differentiating the second equation with respect to time

P -t -t -t _
O= ¢ x =cAx- ¢ b § (@)
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i
{0
Hh
[
]
14

Following Lefahetz we

sc that

Toking the same Liapunov function as for

Diffevertiating with respect to

P ji

*
and it appears that once again we have 2 hermltlian form for -V in then + 1

dimensicnal space (x, @)

which can be made positive definire by veguizing C be

2s was dome previously. Howaver, cals is not the case as pointed out by

Rozenvasser [3] .

i

[

Lh
]

Q
I
B
O

]

- T = T, %~ AR

the Indivect contrel case

v@ = % 2 x + @ (o)

[ 53

n + 1 independent variebles (X, Q). To see ibis not

() and (&)

3 !_t ___t —
V = x B x + =

[

xt B +
\&

R E (ZB
= (<3 Z

*
_t 2
c Q) ;] +

N i

M1
+
0

£

”~

.-.;' .—t-—
@ ¢ + @dx + x dQ

[ ]
In fact -V can be &t mcst posizive seml-definite in the

(2)

3

(4)

4
thar V can be written using

t

—

(6)
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Where use has been made of the fact that ¢ X = x ¢ since both x and ¢ occur

ir corresponding complex conjugate pairs. Now since A is a stable matrix we have
A\ = O and hence there is a one dimensicnal subspace of the space (x, Q)
satisfying A ¥ - b Q = 0. This means that \.’ can be zero at points other than
the origin of (X, Q) space and is therefore not definite in (X, Q) space. Note
that in order to have absolute stability of the system the only critical point
of (1) can be the origin. Hence we mst require that the only solution of

AX -P Q& =01is at tke origin of (X, Q). If this is the case then eq (6) does
not restrict \.( to semi-definiteness. It seems plausible to inquire whether this
requirement is sufficient to yield a definite V. Lefshetz {2] shows that this
1s the case and focuses attention on what conditions guarantee that the only
solution of AXx - b Q = 0 is the trivial solution. He obtains the requirement

t -1
that ¢ A b £ 0 and proves the following theorem.

t t - t ~1
Theorem If ¢ b=2d C d, C is positive definite and ¢ A b < 0, then the system
(1) is absolutely stable.

The treatment given below follows that of Aizerman and Gantmacher 4 . In

order to avoid the difficulty discussed above add and subtract O'Q(G’) to (5) then

N o= s(x,Q) + 0 Q@) &)
Where
t t t t
S, = x C x + @@ -1lc)x + x (@-1Lc)Q
2 2
+ EtE Q @* (8)
t t

Where use has been made of the facts § =Q* and ¢ x = x c¢. It is clear

that V will be negative definite if S(X, Q) is positive definite. Furthermore
requiring S(X, §) be positive definite as & hermition form in the N + 1 variables
(X, ®) does not lead to a contradiction. Following closely to reference [4]

t .t
we consider two cases separately. These being r=¢ b S O0andTt=¢ b = O.
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_t
r=¢c b > 0

125 Approach: Note that equation (8) can be written

t
S(i) Q) = &) Q) c (H-_l_ -6)
2
e .
(@-1¢) T b
2

Which is positive definite if C is positive definite and the Lefshetz

inequality

holds.

The simplest way to insure (9) is to require J— lc = 0.
2

t
Zﬂ Approach: Noting that ¢ b > O add and subtract the quantity

_t _t 2 _t _ - -t _
1 ed-1%¢ ) % = 1 x{d-1c)(d-1 ¢ x
- 2 - 2 2
cb cb
to S(x, Q) 2
t t _
S(x, Q) = c b @ + 1 (a“_l_t) X
t- 2
b
_t _ _t _ t_
+ xCxX - _1_ X (d-1D@-1 O %
t 2 2

cb

In order that S(x, Q) be positive definite it is necessary and sufficient that

t t t
Q(x) =x C X - _1 %X (@d-19@-10 X
_t 2 2
cb

be positive definite.

%]

(9)

(10)

(11)
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Now consider a system in Lure's first canonical form, i. e.,

A= diag(7\1’ seoy 7\&)

— * —

c = [-K1 b = -1
_q: -1
-* -1

and choose

_t
C= a3a +diag(Al,...,An)

*
then B =- QjAk + diag (A1,...,An) where ¥; =R, Ay < O
7\? Ak 2M1 M,
and
— e t—- —
d-11¢)y = BDb - 1 A c -1 ¢
2 k 2 2 kK
n
* 3 *
= Qjdk __ Ak + AxXk + KRk
N3+ Nk k
Eq(ll) can be written )
Q(x) = X diag(Aj,...,A ) x
t t
+%lda - 1L @-19@-1 E)tlz (12)
Tt _ 2 2
c b

With A{ > O we can insure a positive definite Q(x) by choosing the elements of @

so that

a = _1 _ @d-179 (13)
2




-19 -
Hence we have the n equations

n

*® * *
era S Q5Ak Ak 4 ARXE 4+ Xk , k=1,2,...,n
c b =  j=1 * 2M 2 2
k 7\j }k

k

or since Ay is an arbitrary positive constant we require only that the ak satisfy

* .o *
2 4 ; b MRk, Xk J‘E 1 0
Ax ; + 2 2 ak 7
=1 N§ Ay (14)

These are 'Lur'e's resolving prelimit equations'.

In this case eq (8) becomes
t t t
o R U RFEU LI
2 2

which is positive definite in (x, Q) if C is positive definite and we require

a4 -1 ¢ =0 (15)
2

Returning to the case of a system in the lur'e first canonical form (15) leads to

n * * *

J Q3dk Ak 4 AkAk 4+ XKk = ¢ K =1,2,...,n

j=1 **- 2 2

N T
or
i + kX k + Rk 0, k=1,2,...,n (16)
a-k ;;1 % yJ -z 7
j k
_t _

These are the 'prelimit' equations for the ¢ b = O case. Note egk. (16) are

contained in (14) although the two systems are obtained in different fashioms.
Hence we can refer to (14) as the 'prelimit' equations in both cases, The so-

called 'limit' equations are

n a* * * t
Ax X j + AkXk + Xk [T F Ay = o (17)
=1 7\?+7\k 2 2
k=1,2,...,n
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.Example: 2} We consider here the problem of an indirect control system with a
sXample

second order plant. The control system under consideration is illustrated in

fig.(1).
g «e) y £ PE° +P, 54D ¢
_ s (S-ALX(S-N)
fig(l)
Three cases are considered;;\l, A2 real and distinct,7\1,7\2 real and equal,
A1,A2 complex.
CASE I - real roots} 7\1 = -Ml < O, 7\2"’“ - M2 (0
The diagram of fig(l) can be redrawn as shown in fig.(2)
é > P
N 1 ill 1 X1, |PM] -P]M]1+P2
S S + M 1 M1+ M2
- . +
2
1 x2 [PM7 -P1M2+P2
1s + M4, "L - M
- [
fig(2)
The aquations of motion are
;(1 == Mix1] + é
% (1)

X2 == Mgxo +£

g = c1x1 + CoXo -/05"
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Where Cl = PMf - P1M1 B Pz
M1 -M2
2 :
C2 = PMZ - P]_Mz + Pz
Choose
P q
C =
q- T
Since we require C > 0 we must have
P >0, pr-q2>0 (2)
Then we know
Po 9 > 0
B =
90 To
Where
P _ q T (3)

M1 T M L°=§.M2

As sufficient conditions for absolute stability we shall require

P, = _2M1 s Yo

d =Bb-1lc¢c =0
2 (4)
Note: We have expressly indicated that (4) is a sufficient condition if
P > 0. This is also true if p= 0.
Eq. (4) yields
pO +q0 + l Cl = 0
2 (5)
Qo *try, + 1 ¢y =0
2

Inequalities (2) are equivalent to

Pob > 0sp, T -qu >0 (6)
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Where
2
€=M * M
iM1 Mo 1
Using (5) to eliminate p, and r, from (@) we obtain
2
8(90) =(E-1) q0 -1 (c1 +¢2)qo -% c1c2 < 0 (7a)
2
% < ‘% c1 (7b)

The discriminmtof g(q, ) is

2
(c1 - c2) +4 clep
& = 4

Since & > 0, the parabola g(qy) = O is concave upward. Hence if . §< 0O

inequality (7a) has no solution and we cannot demonstrate absolute stability

by this method. If § > O then g8(qy) = 0 has two distinct real roots q1, 92

and we can satisfy (73) by selecting qg, in the interval (941 » q2). Inequality

(7b) must also be satisfied. Note that

2
g(-lep)= g 81 5 o0 |

2 4
Then - 1 Cj is not in the interval (41, q2). Hence qy & - 1 ¢] can be
fulfillﬁd only if 1 (q1 +q2) £ -1 c1, or 2
2 2
__;_ €1 S 2](. -i— :?
or finally
(26-1) ¢ < - ¢ (8a)

and (c1 - c2)2 + 4Ecicp2 S0 (8b)
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CASE II - real roots;?\l =A2 = =M £ 0

In this case fig.(l) can be redrawn as shown in fig.(3).

> P
T — ) £ .
: N o 1 1 1 s P1-2PM
"1 s S +M
b3
1 1 1 2:. Py -P]_H-i-PMz
S+ M S+ M
fig. (3) »
The equations of motion are
;{1 =- H]_Xl +é
e
X9 = X3 - Mx 9
G = cax +exp -pé
Where ¢y = 2PM - Py
_ 2
C2 = MPl "P2 -PM
Choose c = p q\}
q T/
For C 7> 0 we require
P > O and pr-q2 > 0 (10)
Since C 3> 0, B > 0. If
B = Po 9o\
90 rof
the relationship between p , q , r and p, q, r is obtained from
pO qO M 0 + -M 1 po qo _ P q
9, T, 1 -M 0 -M 95+ T, q T
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Which yields

2(p M - q,) = p, (2q, M -1 Y =q, 2 r,M=r (11)
In view of the second inequality of (10) the first can be replaced
by r > 0. Hence using (11) inequalities (10) can be replaced by

2

4ro, M(p, M - q,) - (29, M - r)“ > O, r, > 0 (12)

Again egq. (4) 1is taken as the required sufficient condition for absolute

stability. Substitution into (4) leads to

Po = 1 c1 (13)
2
q° = l‘. )
2
Substitution of (13) into (12) yields
8(ro) =t - 2M (c1M v )t + (cf M2 -2 ¢y M) < O (142)
r, > 0 (14b)

The discriminat of g(r,) = 0 is

S = 4c12 M4-8c1c2M3 -8¢2H
If 3< 0, inequality (l4a) has no solution. If 9> O then g(r,) has two
distinct real roots rj , ry and (l4a) can be satisfied by selecting r, in

the interval (rj, rjp). Inequali.ty (14b) must also be satisfied note that
2 _2 2
g(0) =Cop M - 2Co M. If 'C% M -2CoM & . then (l4b) can clearly be satisfied.
2 2
On the other hand 1f C, M - 2C, M Z 0 we must also require 1 (ry +1r)) > 0
2

or M(C; M - C2) > 0. Hence, we have demonstrated absolute stability if

2 3 2
CiM -2CiCo M -2C » O
and (15)

C (C;M -2) € DorCiM-Cy > O
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*
CASE_III. Complex roots; A, A , 7\ ==M+iV, M » 0.

In this case fig.(l) may be redrawn as in fig. (4).

> P
o e ¢ i p
CP—-;- N ~ 1 Ls 1 X 1 PACHPIA\+Py ‘ +i< >____+_
S - N
_J n A Ry
A1 | | parpiar+ Py
S-K* 7\* -
The equations of motion are
x =Ax +§
X %= 2k ok +4- (15)
= * -
o c1 X + c1 x* Pé
where
* 2
C§y = PN +P1 N+ P2
NS A
Choose a positive definite hermitian matrix
p q
C = , P, ¥ real
q* r
For C >0 we require
P > 0, pr-q¢* > 0 an




- 26 -

1f B= 1 Po 9,
2
%
dg To
we have
_P. 2 q = -—A——— 3 ro = —r——
Po = M o M+ivw M
Eq. (4) yields
P, + 4, *+ ¢ =0
% *
r, + q, + ¢ = 0

Note that these equations imply r, = po* = po - Also using the first equation
we have
P =Mp, =-M(c; -+ qp) (18)

Inequalities (17) can then be rewritten in terms of qg
2 2 2 2
M(c1+q) -M +V)dqeqy > O

(19)
’ c1]+ g ¢ O J

Noting that ¢; + q, must be real we can write
c; =X +1B, q, =¥ -iB

Also, setting € = V2/M2 (19) can be written

h(x) =2 + 20 - (1+€)B2 - g 32 S 0 (20a)
X + ¥ < (o] (20b)
Let o} and X3 be the roots of h(A). Since XA 2& O the roots are real and of
opposite sign. Take X1 < 0, X 2> O then to satisfy (20a) we must have
O\<o<1 or ASpy. Now h(-8) < 0. Hence - ¥ 1is between the roots. Then
to satisfy (20b) we must choose J§' such that

SR (21)
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If this is done then this procedure guarantees absolute stability.
Clearly, it is not always possible to satisfy (21). In fact it is readily

found that maximum ©Xjoccurs when ¥ =-M p and takes the value

v
O(l =- y B (22)
M
which is less than zero. Consider the case where P> P1 = 0. Then
Ci =K+ iB = i Py
2y

so that & = 0 and (21) cannot be satisfied in view of {22). Suppose only

p = 0, then

C; =X+ iB =- Py _ i (P2 -P1 M)
2 2V

Substituting into (21) and (22) we require

P Py - PiM
2 < 2M

or simply Py > 0.
Example: ‘The Second Bulgakov Problem', References LS) Chapt. 2, par. 5] ,

[2, chapt. 5, par. 4J

We consider here a system described by the equations

Tz‘;1‘+U-;'+K’n=T2¢ (1)
£ = o)
T=3an+ E—r} + G25{ -1
25

where T2 characterizes the inertia of the regulated object and Q , E, Gz,

and Q are constants of the regulator and U and K are positive constants.

Now, ‘;i is eliminated from the last equation using the first

2 2 . 2
= (¢ - KG E-GU -(1 .G 2



- 28 -

Defining the phase x; =7, % =1i we obtain using (1) and (2)

X1 = %2 }
X9 == K_ x; - L x, +§& (3)
2T e $
’ £ - e«
2 2
0 =(a - KG )x; + (E - G2U X9 - (1 _ G
(- Ky T (E-&4g) @ ) §/
or '% = 0 1 X _ o é = AX - E‘é
"1 -2 1
£ = o) (%)
t
o= ~6\]_1“1 + F2X2 - /)4' = ¢ X -pé
where O(l = K N 0(2— H
® 7
2 i 2 2
J\l =a4d - K, 5\2 =E- GU , p=1 _ G
T 1’ L

Noting that X] and X are positive it is seen that the roots of the characteristic

equation
2 =
A +'o(17\+-o(2 = 0 g

have negative real parts and hence A is stable. Let B and C be given by

We know that B > 0 1f C > O and the conditions that C > O are
p > O

. 5 (5
Pr - q° > O
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The relationship between the elements of B and C is given by Liapunov's matrix

equation
t
A B + BA =-¢
~2X 24, Po = HKiGp - X1, == p q
Po "X19p = X 27, 2(q, =o¢11,) q r
or P= 2%, q,
4= o9, *Xyr, - P (6)
r= 2(x7 -1, ~q,) )
We have absolute stability if
~t-1_ — -
P>d ¢ d , d = Bb-1 ¢ {7)
2
Choosing as sufficient conditions for absolute stability ol = O and pP>0
we have
4 =- %% * -21-3‘1
= 0
r, + 1 x\zl
° 2
and from (6)
9%~ L.>» T, = r + P,
° 2y ° 21 21X 9
so that we require
p + X9 by 1 = 0
(8)
P+ Iy t iy 8y = 0
Also, from the L >0 condition we require
1> ¢ (9

L2
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Noting the first relation of (5) the first equation in (8) yields
¥1<0 (10)
Eliminating p between the two equatiomns in (8)
r =¥i"xi &2
and noting that the second equation in (3) requires r > O we have
¥1 >K 1 ¥ 2(note this implies 8‘,_(0) (11)

In terms of the initial constants the sufficient conditions for absolute

stability ( (9), (10) and (11) ) are

2
1 ¢
2 >
L
2
G U
E < : (12)
2 2
0 ¢ KG _ U Su _
< = A< (3 )

Example; Gibson and Rekasius [6]
Consider the closed loop system shown in fig.(l) where the nonlinear

element is a saturating amplifier

o Qo)

1
- S(S+1({S+2)

o)

q"

fig. (1)
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This system can be treated as an indirect control system and can be put in canonical

form by redrawing as in fog. (2).

1 Y1 1
S +1
o L | +
N 1 4‘
- S
+
1 y2
S + 2 -1

We have then

e
]
|\
@]
o]
———

<l
™~
Joed
p—
asal

\ 0 —2} \-
£ = Qo)
0‘ ('13 1) -?'

]

We would like to use Lur'e's theorem to demonstrate absolute stability. 1In this

case the 'limit' equations are

2
33 - 1182+ L =0
2 3 2
-1a132-1la; _1 =0
a1z 13z -1

Since the~7\i are real we look for a real solution to these eqs. Solving simultane-

ously we find

Ay = 2 =

az=- V2 + 2
Hence we have failed to show absolute stability. Since Lpr'e's theorem gives only
sufficient conditions we cannot conclude that the system is not absolutely stable.

However, note that in order to be classified as absolutely stable the system must
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by globally asymptotically stable for all admissable characteristics  and a
function § 1is admissible if it satlsf’as *he “hree conditions
Qo) = 0

oQ(g) © for G0

*00
f Qo ) Jgv diverges

o
Hence the linear charactevistic § = K3 for O0< K < 00 is admissable. We know
that with the linear characteris:zic, for suff’clently large K the system becomes
unstable. Hence, we will nct be able 2o demomztrate absolute stability by any
means .

Q(cr)/o,
5. Restriction of Q{0~) to Finitenecs of the Ratio

It has been seen that the usefulress of “he presented sufficient conditions

are only conditionally stable, i.e., with @ = K0 they are stable only within
some range of K. This regioz of K is readily found by techniques of linear
analysis. Since §(0") = KG is an admissable characteristic for 0 < K ¢ + @
in our present formulation, we require that the system be asymptotically stable
for all 0 € K < 400 in crder to be classified as absslutely stable. Hence we
obviously rule out a 1arge class of systems of interest.

We attempt to correct this difficulty to some extent by restricting the
class of admissable characterics Q{Q-) to those contained completely in the
sector of the Q-0 plane between the lines § = 0 and § = Kg°. In other words
the condition G"Q¢g-) > 0, 0" # 0 is replaced by 0 < (0" ) <« K. Our attention
is being directed toward systems which are stable for lineao; characteristics with

slope less than K. The value of K can be determined by linear methods.

i
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The approach taken is to select V positive definite for all & and § (x in the

®
direct control case) as before but to require -V (S(x,Q) in the direct control

case) to be positive definite only for a function ® contained in the sector [0, K] .

We consider the direct and indirect control cases separately.

Indirect Control - The system of equations we have been using to describe an indirect

control system g

SER N

It is more convenient here to work with

We define the new variables X

%]

Then (1) becomes

e Xie

U

_t _t -1
C = ¢, A

t -1
, ¥ = pP-T,A B

where

We choose a slightly different form for

—-t ———
)= ¥ BX

V(x,

= &5- B l
= Q(g) (1)

-z 3 -pé’

the eqs. in a somewhat different form.

- = A7-% 5
- A% -3¢

= Q@) (3)
t -1 -1 t

the Liapunov function

(@ T DE@E D+ B P @) | )

t t t_ 2
where X and @ are positive constants. Note that (G -c x)( -x ¢) =|o-c x|

[ ]
T_he modification of V is to enable us to obtain a convenient form for V.

Differentiating (4)
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t - t e _t _t
B X + X B X - QEF-X ©) -o«¥ QO -c )

<o
]
nle

t t
+B8Q( AX-¢ bQ- ¥yQ

t t t t

X AB x- D B x Q + x B A X “x B b §

t
- xPQ(F-% ¢) - x¥ Q(a-c x)

t
+ R QE AT - p A

t t

t t
Vv =X C x +(b B- x¥c-B ¢c Afx Q + @ X (BD - «¥ ¢}

+ 2% QO + B @

t t t
=X CX + (B F- x®C -1 B A T X §
2

t t
+ @ X (B P- x%¢€ -1 B A ©
2

2
+ 2x®Q + B
t
where -C = A B + B A
_t - _t t_
and we have used the fact that ¢ A xXx = x A c. Now, add and subtract the

quantity 2 <X ¥ (G - QQO")) ()
K

o t - - t
F =[x cx+ T T QR T+ (ppr2ery ]
K

- - _ ~t_ 0 roxl(r- ) ) «o)
where ¢ =B b -w¥c-1 A C K
2
We consider the case where ¥ » O, then since the last term is positive if and
only if € ¢ K0 .we have a -V which is positive definite in the desired

sector of the § -Q” plane if the term in brackets is positive definite.

(5)
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first approach - Eq.(5) can be rewritten

_t
v o= x,Q [ C ( + 2B (@ - &u)m(cr)
el 4
o, . Af+4£) (6)

From which it is seen that -V is positiwe definite in the sector fo, k] if

C > 0 and the following Lefshetz inequality holds

2% t -1
R + K 2a,C 4, (7)

Hence these are sufficient conditions for absolute stability.

second approach - This is essentially a generalization of Lur'e's theorem. We

= maira
-\

i
W WaAANT

_ _t _ _t_ t
PG,0) =xCX+ oo @ + @ % do + (RP + 228) ¢’

positive definite with respect to (;5,0"). Take

C =3 3 + diag (A1, ..., Ap) (8)

then

t _ _t_ _t _
P(x,0°) =x diag(A1, ..., Ap) x + x J A  x

_t_ t 23

+ Qdox + x dy @ + (RP+ K ) @

2

t

A -t _ -
Add and subtract J/-"P+ K x 3 +3 x) toP(x,8)

2

t _ _t_ \
P(x,0°) = x diag(A‘ sore A X +\ A x +Jﬂp + 2«&\

+ (Qdo X + x do Q) - Rp + 2AR 20&8‘ (x a + a )
_t t
- =X diag(Al,...,An)x +|qx +J}3p+w|

t

+4@, - fop + A%fi) T+ ¢ x Wo -/Rp+ _Z.e.ck_b:_‘2>
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which is positive definite if A; > O and

do - JBp+ Zo;z“ a =0 (9)
or
- - t. 1 =
B b-A¥c - 1 A c - \/ﬁ,o-!- 2x¥ = 0 (10)
2 K

Hence with Ajf > 0 if we can select a set of 4; i =1, ..., n which satisfy

(10) the system is absolutely stable in the sector [0, k] .

Direct Control - Consider a direct control system described by the equations

x=A;--I;Q(G')

(11)
—t — [ ] —t —— t —
O = ¢ x g O =c A x - ¢ b Q@)

Take as the Liapunov function

Then
. t _t _ _t .
-V=xCx+beQ+biQ
- B (¢c A x -c b Q)
_t _ _t _t _ _t _ t_
= x C x +(b B-1 8 c A)x @ + @ x (Bb-18 Ac)
2 2
t_ 2
+ 3 c b Q
_t — t _ _t _ _t _ 2
=x C x +d X @ + @ xd + Bc b Q (12)
_ - t _ t
where ol =B b -1 83Ac ,-C=AB + B A
2

Add and subtract the quantity (0"~ Q(9°)) @(g) to -{7
K

» _t _ _t _t - _t _ _
—V=xCx+{Q(d-_l_c)x+x(o\--]_. c) Q]
2 2
-t _ 2
+ (B c b + 1D + (g -Q @
K K
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Then -"l is positive definite in the sector[O, K_l if we make the quantity

- —t _ _t _t _ £ _ -
s@ @ = xCx +[a@ -1°)x +x @ -1 4]
2 2

(13)
~t _ 2
+(3 ¢ b + 1) Q
K
positive definite in (X, Q).
Consider the case r = 3 c b + 1 > 0
K
first approach - rewrite (13) in the form
t — —
S(x, Q) = (x, @) Cc d-1 ¢ x (14)
2
— _t _t_ o
\(d-;c) Bec b+ DJ\T
2 K
which is positive definite if C > O and the following Lefshetz inequality holds
_t _ _t -1 _ _ (15)
RBc b + 1 > (d-1¢) C (d-1 ¢
K 2 2

Note the simplest way to insure (15) is to require

d-1¢c =0
2
second approach - add and subtract the quantity

1x (@d-1 9@-1 09 x
T 2 2
to S(;, Q). Then
- 5 _ _t_ . 2 _t
S(x,Q) = r @ + 1 (d-1 ¢) x + x C x
N3 2
t _ _t _
) x
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To make S(;, Q) positive definite we need make

_ _t - v _ - — _t
Q(x) = x C x - 1 x (@A-1 e)d -1 ¢) X (16)
r 2 2
positive definite.
_ - _t
Take C=2a q + diag (A}, ..., AY)
then Q(;) can be written
_ _t tr_ _t - _ _ t -
Q(x) = x diag (Al,...,An)+x[a a -~l@h-1 c)(aA-1 ©) x:\
r 2 2

with AL > O we insure Q(X) positive definite by select the elements of A so that

1 (d-1 0 =37 a7
T 2

or

t ' _ - - — t _
\/;_+/3cba =d-1l¢c = B b - BAc -1 c¢ (18)
K 2

(&)
N

Let the system (11) be in Lur'e's first canonical form so that

A = dilag (A1,...,7\n )

- ) - /
c = -°<1 b = -1
.*
- -1
\ Y \ )
*
B=-/4j4k + diag( A ..., An ) -Mj = ReA1<0
AT A 2M 2M
h| k 1 n

The (18) can be written as the n scalar equations

n
* * *
E\k ZE; Eaj + zahk c& k 4‘ o‘l( -—Z\k‘/l- + [B EF FA _.AE = 0
=1 —% —_ K 2My
Aj+Ag 2 2 -

k = 1, 2, ses sy M (19)
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which are the 'prelimit' equationms.

The 'limit'equations are obtained by setting A; =0

n X % * )
Qq 2{: Eﬂj + BAR X + ?fl& _ Q/l; + B8 c b | k=0
7(? N 2 2 K
j=1 + Kk
K=1, 2, ..., (20)
t-— — —

For the case r =1 +8c b = 0 we need only setd - 1/2 ¢ = 0 to make

K

S(;, Q) positive definite. The resultant equations are the same as (19) and (20)
when r is set equal to zero. Hence (19) and (20) hold for both cases.
Example: We return now to the problem considered previously

G(s) = 1
S(S +4)(s + 2)

§=1-1 0 Yy _ -1%
. 0 -2 -1

£ = aw)

0= (1,1 %

It is easily verified that for a linear characteristic the maximum allowable K for
stability is K = 6. We wish to examine the system for absolute stability in the
sector [0, K] . Sufficient conditions are that it be possible to select real Qi

(the realness of A4 is imposed since the A in this case are real) which satisfy

_ t _ \[ 2X8' = 0
B b -«¥c - 1L A c- PR - X
2

Now
_t t -1
c = ¢, A = (-1, 1) -1 0 = (1, - 1/2)
0 - 1/2
P=0,¥=-(1,-1/2) -1



Hence we must satisfy the relationms

2
-‘al_ala\z_Al__g"+l_’g_'a\l=O
K

2 3 2 2 2
a,3 2 —
-_L_Z_ﬁ_f‘_2+ﬁ_L~J§_az=0
3 4 4 4 2 K

or since the only restriction on the Aj is that that be greater than zero, the

aj must satisfy the ineqﬁalities

2
Q1]  A1d2 K + 1 *' Qq; 70
2 3 2 2 K

3 A K
Select = 1, then
4, d:4, 1 0
- _ >
2 3 Ti‘al
2
4147 W) 1 1 0
- - = - = v
3 el S
or
42 - 321 - 3 ford; 5 0 1< - 342 _ 3_ 3 ford , 5 0
\/T(\ 4 449
A2 >-331- 3 ford g 0 415_ 3%2-2 3.3 - for d3<& 0
2 K 4 VK 43,
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The region of allowable values of (Q 1>Q2) is shown in fig. (1)

\ hk

Clearly the region vanishes as K — oo the limiting case being where@is

tangent toQ) . To find this value of K we solve the relations

d2=- 391 3
2 VK
Ap=- 343 -3 _ 3
4 \/'f‘ 4 Q2

simultaneously for Q) gwhich yields

12 + 144 _ 3¢
2 = ﬁ' K

2

the limiting case occurs when the discriminant vanishes hence

K = &4
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We have demonstrated absolute stability in the sector ‘_‘0, 41 . However we have
said nothing about other values of K since the procedure used involves only
sufficient conditions. In particular it is possible that the sector could be
enlarged by choosing ©f other than X = 1.

6. The Problem of Aizerman

The discussion of the last section raises an interesting question. Suppose
the nonlinear characteristic Q(0~) is replaced by a linear Q(G°) = KO and
the system is found, by means of linear analysis, to be stable for x< K< . Can
we conclude that the system is asymptotically stable in the large for Q@ contained
within the lines @ = A0, Q@ = BQO~? In other words, can we conclude that the
system is absolutely stable for @ contained in the sector Y_ou,@] ?

This question was originally posed by Aizerman with regard to a specific system
of equations. This system being

;=A;-EQ(xj) (1

where b has only one nonzero element and j is any integer between 1 and n.

Aizerman originally conjectured that the question would have an affirmative

answer. However, it has been shown that this is not the case. Aizerman's problem

has received much attention, however, the only complete results are available for

n = 2. In this instance the problem has an affirmative answer except for an exception-
al case. For n 2 3 additional conditions must be imposed. Aizerman's problem

for n = 2 takes the form

X f(x)+by,}.'=cx+dy (2)

or

]

X »a:x+f(y),;r=cx+dy 3)
Eqs. (2) were originally treated by Erugin {7] and Malkin [8] and egs. (3) by

Malkin [8] . Malkin's treatment of the problem is repeated in Hahn [91
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Krasovskii [10} considers a more general problem with n = 2 and having two
nonlinearities. Since this problem has Aizerman's problem as a subclass,

Krasovskii's treatment will be given here. A system of two equations with two

nonlinear functions will appear in one of the following forms

x = f1ix¥f+ b y , ; = fo (x) + d vy (4)
x = f1(x) + b y , § = c x + f5(y) (5)
X = £1(x)+ fo0y),y = ¢ x + d y (6)
X = a x + £,y = f,()+ d y (7)

Case 1. We consider system (4) first, If f‘(x) is replaced by hix and f2(x)

we obtain the corresponding linear system
X = hyx + by, y =hyx +dy (8)

which is stable provided the Routh-Hurwitz conditions

hi + d< 0,d hy -b hy> 0 (9)

are satisfied. Hence we postulate the conditions

f1(x) +cd< 0, of £1(x) _b f2(x) -0 for x % O (10)
X X

x
and inquire into the absolute stability of (4), i.e. are conditions (10)
sufficient to guarantee the absolute stability of (4)?

Krasovskii considers the Liapunov function

V(x, ¥) = (dx-by) + 2fx [ £146 ) - b £5(&)]elé (11)
o
which is seen to be positive definite, if b F# O, by virtue of the second
inequality of (10). Note that if b = 0, the variables of (4) are separated
and the system can be integrated directly. This case is not treated here.

Also note that v(x, y) w3 06 if x* + y? —— o0. Differentiating (10)

with respect to t and using (4)
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<
U}

2(dx-byY)@Xx-by) +2(df (x) -bEH(x)) X

2 (dx-by)(d £] -b f25 +2(d £] - b £2J(f1 + b y)

2 (f1(x) +d x){d £1(x) - b £2(x))

(0 ) (o 202 10 a»

So that \'I(x, y) < O for x % O and ;I(x, y) = 0 for x = 0 and hence ;I(x, y) is
negative semi-definite. Moreover, since dx/dt ¥ 0 for y 3= O the conditions
of theorem 5.are satisfied and we have absolute stability.

Note that if only one of the functions f'(x) or fl(xﬁ is nonlinear then the
problem treated is equivalent to egs. (2) or (3), i.e., to Aizerman's problem
for n = g.

Krasovskii {10ﬂ points out that similar methods lead to the following results

for egs. (5), ¢6) and (7).

Case 2. Consider egs. (5). The conditions

f1{x) + £2(¢v) < 0 f1(x) f2(y) _bc > O0forx,y # O (13)
X y X y

are sufficient for absolute stability. Here the Liapunov function is taken hs

2 2
Vi, y) = 1 (B -bc)x + 1 (bz-ba.c)2
2 2 o 2

X y
+ A f £1(4)dE + ﬁf £ eln b B x y
o =< *o
Case 3. Consider egs. (6). 1In this case the stronger form of the conditions
corresponding to the Routh-Hurwitz inequalities
L) +44- §<0, 1) -£2(y) ¢ » §% O (14)
* 3 7 for x, y# O

are not even sufficient to guaranteée asymptotic stability in the small. However,
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the additional hypothesis that
£f1(x) + b x 1is a monotonically decreasing
function of x, or in particular

£1(x) + b < 0 (15)

along with (13) guarantees absolute stability. The proof is based on the

Liapunov function

y
i
Vix, v) =1 ¢ +b*&-5\f £1(-b ¢ ) - £2(65 1o
(xv;iax y) Yl aé 2063 ot

(o]

Case 4. Consider eqs. (%). Here the conditions

3 +d< 0, d- fi{x) £2(v) > 0 for x, y # 0 {16)

X

-

guarantee absolute stability.

Example 1. Lll] Bergen and Williams have verified Aizerman's conjecture for the

class of third order comtrol systems illustrated in fig.(1).

M| QT | I c_

N

- LG+ A (5+A,) (5+A5)

G1(s)

fig. (1)

This system is described by the differential equation

O 4 (A1 +A2 ¥A3)0° + (X1 At AL AFHAIND T +A1 N 2 N30 (1)
+ Q@) = 0

1f the nonlinear characteristic ®(G") is replaced by the linear characteristic

@ = KO, the linear system is found to be stable for

K] < k< Ky
where Ky =- 7\1 NoN3 (2)

Ko = (A7 A 23 ON NP AR NA 3= A Ao A 3
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We wish to demonstrate the absolute stability of the system under the hypothesis

that
K QO K for C°# O
o_

and Q(0) = 0

The system is successively transformed via the diagrams in fig.(2).

(3

as
Gz(s)
o h(0 ) 1 C
] Nl > >
- (S+iB) (S-iB) (S+o<)
K4
(b)
! X1 a,
S+iB
G A h(cr) 1 T
N' —_— X
_Q $-3B 2 p.
L X3 aj
S+

fig.(2) (C)
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where hig-) = £(O) - RO~ :
X = S; +S; + 83 (4)
/3 =\/sls2 + 8; S3 + S3 Sy
E‘1 =-—-——-—-——-—-1 .’aZZ*.—‘—L-.,—"f a3=—’2’—-]l:—’—2” )
2iR(ex - Q) 2ipl= + 3B x A3
Now eq. (2) can be written as the first order system
]
X = A ¥ + B hio) (6)
O=-ax =-x 3
where A = [-iB 0 0
0 iB 0
5 S -
_ _ e\ ]
b = 1 ’ a - al A
%*
1 a,
%
1 2\3
Since @ satisfies (3) we have
‘o</32 =k} -ky hgog) < © for o £ 0 (7

Choose as a candidate for a Liapunov function

Lt © (8)
V{x} =x B x +b‘f RN} A N
o

with B = 1 (4] 0
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where /o>0 and ¥ are to be determined. Differentiating (8), using (5) and
t
noting thkat @b = O we obtain.

- _t t - L
< =-%A 5 + B A X+l (-BF +1yAad) X
2
t t_
+ X (B F + 1 yAJ
2
Now definme the function g(G ) bv
o glo.s = ni0)
so that
2 7
ol < glg) < O for G #£0
and gy = 0O

*
They-V can be written

.« _t t b I R - t_ ) -
~*V=x{-»(A B + B A) +g“:i’;ab B-1%¥33a A+B b & -_l_,K\Az\a};SE:
2 Z
{9
Since -V is linesar in g0 ) we need only insure that -V is